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• Focusing on fuel load may ignore effects of other spatial controls on fire.
• We used burn probability to combine effects of fuel load and other spatial controls.
• We compared fuel-load and burn-probability based fuel treatments' effects in China.
• Burn probability-based treatments were more effective at reducing fire behaviors.
• Burn probability needs further investigation in model development and application.
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Fuel load is often used to prioritize stands for fuel reduction treatments. However, wildfire size and intensity are
not only related to fuel loads but also to a wide range of other spatially related factors such as topography,
weather and human activity. In prioritizing fuel reduction treatments, we propose using burn probability to
account for the effects of spatially related factors that can affect wildfire size and intensity. Our burn probability
incorporated fuel load, ignition probability, and spread probability (spatial controls to wildfire) at a particular
location across a landscape. Our goal was to assess differences in reducing wildfire size and intensity using
fuel-load and burn-probability based treatment prioritization approaches. Our study was conducted in a boreal
forest in northeastern China. We derived a fuel loadmap from a standmap and a burn probability map based on
historical fire records and potential wildfire spread pattern. The burn probability map was validated using
historical records of burned patches. We then simulated 100 ignitions and six fuel reduction treatments to com-
pare fire size and intensity under two approaches of fuel treatment prioritization. We calibrated and validated
simulated wildfires against historical wildfire data. Our results showed that fuel reduction treatments based on
burn probability were more effective at reducing simulated wildfire size, mean and maximum rate of spread,
and mean fire intensity, but less effective at reducing maximum fire intensity across the burned landscape
than treatments based on fuel load. Thus, contributions from both fuels and spatially related factors should
be considered for each fuel reduction treatment.

Published by Elsevier B.V.
1. Introduction

Aggressive fire suppression can alter fuel load accumulation
patterns in forests (Reinhardt et al., 2008; Schmidt et al., 2008;
Stephens, 1998). Those forests adapted to infrequent, high severity
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fires (Noss et al., 2006) or forests with rapid decomposition rates
may not have long-term fuel load accumulations (Hely et al., 2000).
In some forest, especially dry forests (e.g., ponderosa pine forests),
fuel accumulation caused by fire suppression can promote larger
and severer fires (Schoennagel et al., 2004). For boreal forests in
northeastern China, aggressive fire suppression carried out for over
a half century has produced high fuel accumulations (Chang et al.,
2008; Xu, 1998). Throughout the region, the resulting increase in
horizontal–vertical continuity of fuels has produced more intense
and frequent fires than from fires before the 1950s (Chang et al.,
2007; Tian et al., 2005; Xu et al., 1997). For example, a wildfire on 6
May 1987 that burned 1.3 × 106 ha occurred in four bureaus (includ-
ing Xilinji, Tuqiang, Amur and Tahe) of the vast region of Great
Xing'an Mountains (covers 8.46 × 104 km2). This fire affected not
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only forest composition and structure but human populations and en-
vironment as well (Cahoon et al., 1994; Wang et al., 2007; Xiao et al.,
1988). Because of increasing forest fuel accumulations coupled with
the warmer and drier climate of recent decades, wildfire manage-
ment has become a major concern in many regions (Ager et al.,
2010b; Chang et al., 2008).

Fuel reduction has become an important tool for reducing fire haz-
ard (Ager et al., 2007b, 2010b; Pollet and Omi, 2002; Shang et al.,
2004). This hazard is commonly defined as the fuel complex com-
posed of volume, type, condition, arrangement, and location of fuels.
In turn, this fire hazard combining with the favorite fuel moisture
(affected by weather conditions) determines the degree of ease of
ignition, spread and the resistance to fire control (Hardy, 2005). At
present, the objectives of fuel treatments for reducing fire hazard
are usually aimed at reducing fuel loads (Reinhardt et al., 2008).
They can also be designed to reduce unwanted fire effects such as
those within wildland urban interface (Ager et al., 2007b, 2010b).
Fuel reduction treatments are often implemented using prescribed
burning, thinning, or a combination of the two treatments (Ager et
al., 2007b; Liu et al., 2010; Pollet and Omi, 2002; Reinhardt et al.,
2008). Prescribed burning can reduce wildfire ignition and spread
by consuming dead and live surface fuels (Fernandes and Botelho,
2004). Thinning can reduce the likelihood of surface fires spreading
into crown fires by removing the “ladder” fuels, including smaller
fire-susceptible trees (Stephens, 1998). These fuel treatments are
commonly used in many forested ecosystems in North America
(Stephens, 1998), Europe (Fernandes and Botelho, 2004), and
Australia (Smith et al., 2004). For example, the Healthy Forest Resto-
ration Act (HFRA) of 2003 (HFRA, 2003) called for high priority
projects to reduce hazardous fuel loads to reduce the likelihood and
severity of catastrophic wildfires in the United States.

In most cases, fuel treatments are often implemented at site or
stand level (e.g., 1–10 ha). Fuel load together with fuel characteristics
is often used to prioritize stands for fuel reduction treatments
(Reinhardt et al., 2008; Schaaf et al., 2004). For example, in order to
evaluate the economic tradeoffs between fuel treatments and fire
suppression, Schaaf et al. (2004) divided four chaparral types into
five fuel load classes and used these classes to establish priorities
for prescribed wildfire treatment. Stand density index (SDI), a corre-
late of fuel characteristics, is widely used to identify stands that are
heavily stocked and thereby fire-prone. From this information, stands
then can be ranked for fuel reduction treatment (Ager et al., 2010b).
For example, Ager et al. (2010b) employed SDI to prioritize stands
for fuel treatments to reduce wildfire risk in the urban interface and
to preserve old-forest structure.

However, evidence is growing that placing too much emphasis on
reducing fuel load may underestimate or ignore the importance of
other factors (Graham et al., 2004). For example, in somemixed conifer
forests, fuel load is less important than weather and topography in de-
termining wildfire severity (death of canopy trees affected by fires)
(Schoennagel et al., 2004).Wildfire is a spatial process, not only related
to forest fuel load accumulation but also to a wide range of spatial con-
trols, such as human activity, weather, and topography (Aldersley et al.,
2011; Yang et al., 2008). Human activity can influence the potential
number, timing, and spatial locations of wildfires (Fry and Stephens,
2006); weather conditions can influence the occurrence, size, and be-
havior of wildfires (Parisien et al., 2010); and topographical positions
associated with fuels can determine wildfire spatial spread direction
and rate (Yang et al., 2008). A thorough understanding of wildfire
growth and behavior therefore requires a landscape-level consider-
ation of the interacting effects of spatial controls.

Wildfires consist of two basic consecutive spatial processes:
occurrence and spatial spread. Wildfire occurrences (lighting- and
human-caused), which are also called ignitions, are complicated spatial
point processes that are likely to be highly clustered within a given for-
ested landscape that is under the control of factors such as topography,
weather, fuel, and human activity (Yang et al., 2008). A wildfire does
not necessarily spread to neighborhoods and burn large areas
(Finney, 2005). The spatial spread pattern of wildfire is further affected
by its surrounding contexts (e.g., fuel type and topography). Therefore,
wildfires are stochastic, not random, spatial processes that can be
explained and modeled with spatial controls. For example, a single
lighting fire may be viewed as a random process. However, at the land-
scape level, studies have shown that the spatial pattern of lighting fire
origin location is not completely random. Rather, it exhibits a great
degree of clustering on landscape. This situation was observed in
other studies (Diaz-Avalos et al., 2001; Podur et al., 2003). Therefore,
we propose using burn probability to address both the combination
of occurrence (ignitions) and likely spread patterns of a wildfire across
a forest landscape (Finney, 2005; Yang et al., 2008).

In application, burn probability has been used to determine where
and when wildfire occurrence and spread potential are greatest
(Parisien et al., 2007); it can also be used to quantify the influences
of alternative fuel treatments (Ager et al., 2007a). In addition, fuel re-
duction strategies based on burn probability can be designed to limit
or interrupt the occurrence and rate-of-spread potential related to
various sources of wildfires. Thus, a given fuel reduction treatment
might reduce rate of spread and thus, burn severity, or it might
even stop a wildfire after ignition. However, because it is a relatively
newwildfire management tool, burn probability needs further testing
and verifying because its effectiveness has not been well studied. Cur-
rently, for the most cases, fuel load and fuel characteristics (e.g., stand
density) are employed as the primary measures in fuel treatment by
many management agencies. A possible alternative would be to
apply fuel treatment based on burn probability. The objective of this
study was to compare two approaches to assess the effectiveness of
fuel treatment for reducing wildfire size and intensity. The first ap-
proach is based on burn probability; the other on fuel load. Given
the high risk and cost of conducting forest fuel treatments across a
real landscape, effective allocation of resources is critical.

2. Material and methods

2.1. Study area

The study was conducted in the Huzhong National Nature Reserve
(HNNR) at Huzhong Forest Bureau (HFB) on the north side of the
Great Xing'an Mountains in northeastern China (122°42′14″–
123°18′05″ E, 51°17′42″–51°56′31″ N) (Fig. 1); it covers 166, 886 ha
and ranges in elevation from 660 to 1200 m. The study area falls
within the cool temperature zone, which is affected by Siberian cold
outbreaks and is a typical terrestrial monsoon climate. According to
weather data (covered the period from 1972 to 2005) from the
Huzhong weather station, the mean annual temperature for the
area is −4.0 °C with a January mean minimum of −35.8 °C and a
July mean maximum of 24.5 °C. Mean annual precipitation is
458.3 mm, of which more than 60% occurs between June and August.

The primary trees are larch (Larix gmelini), pine (Pinus sylvestris L.
var. mongolica), spruce (Picea koraiensis), birch (Betula platyphylla),
and two species of aspen (Populus davidiana and Populus suaveolens).
Birch is a pioneer species whereas larch is a late succession climax spe-
cies in this region. With the exception of wetlands near rivers, larch is
widely distributed over 65% of the study site. Birch and pine are mixed
with larch in most areas due to fire and timber harvesting (mostly clear
cut). However, pine covers only 1.8% of the area (from the stand map).
Aspen, which is shade-intolerant, is limited to moist terraces along
rivers. In contrast, the shade-tolerant spruce occurs primarily in valleys.
Dwarf Siberian pine (Pinus pumila) occurs largely limited to elevations
>800 m.

The primary carrier of wildfire for the birch and aspen is broadleaf
litter and herbaceous plants, which produce the least severe fires.
Nevertheless, under high winds, the broadleaf forest can cause high



Fig. 1. Map of Huzhong National Nature Reserve (HNNR) in Huzhong Forest Bureau (HFB) showing locations of the 100 simulated fire ignitions, roads, and fuel models.
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rates of spread when fueled by high accumulations of leaf mass. The
primary carrier of wildfire for the coniferous forests of larch, pine
and spruce is coniferous litter interspersed with grasses and shrubs.
Although these coniferous litters typically produce surface fires,
under drought conditions they may cause crown fires, spotting fires
and torching fires that sometimes torch individual trees. The primary
carriers of wildfire for the shrublands of dwarf Siberian pine are live
and dead shrub twigs and foliage in combination with dead and
down shrub litter. The influence of this fine fuel depends largely on
its moisture content. These shrublands usually do not produce
crown fires because of the absence of a tree layer sufficient to carry
one (Wu et al., 2011b). However, the shrubs can also produce
crown fires with sufficient surface fire intensity under favorite weather
conditions (e.g., high wind speed).

Historically, wildfires in this region were characterized by frequent,
low intensity surface fires mixed with sparse stand-replacing fires on
relatively small areas with fire return interval ranged from 30 to
120 years (Xu et al., 1997; Zhou, 1991). Currently, fires have been infre-
quent with a fire return interval about 500 years (Chang et al., 2007);
but often burn intense and larger fires (Chang et al., 2008), especially
since 2000. For example, fires burned areas of 71.2 × 104 ha and
11.3 × 104 ha in 2003 and 2005 based on fire data from 1965 to 2005
(Zhang, 2008). There is no specific fuel treatment strategy for reducing
Table 1
Fuel model parameters for Huzhong Natural National Reserve (HNNR).

Fuel Model Fuel load (Mg/ha)/SAVa (m2/m3)

1-h 10-h 100-h

I 8.46/9000 2.48/358 4.38/98
II 8.82/9962 3.21/358 2.66/98
III 5.12/7030 4.32/358 2.36/98

a Surface Area-to-Volume ratio.
b Fuel bed depth.
c Moisture of Extinction Dead Fuel.
d Dead/Live heat content.
wildfire potential in this region. Nevertheless, fuel reduction treatments
sometimes inadvertently occur when forest understories are thinned for
stand regeneration or other timber harvesting practices. Approximately
2000 ha are harvested (clear cut) per year within HFB, but this may
increase to 9300 ha (takes up about 1% of the HFB) depending on fluc-
tuation in timber markets. Earlier studies in the region have indicated
the need for fuel treatments to mitigate the severity of wildfires and
their effects (Chang et al., 2008; Liu et al., 2010).

2.2. Deriving of fuel load map

We reclassified the stand map into the three models (Fig. 1;
Table 1). The fuel models were from previous studies (Shan, 2003),
in which 21 fuel models were developed for northern China and
four of them (including a non-fuel model) occurred in our study
area. These fuel models have distinct fire behaviors. Through running
the Behave Plus fire modeling system, rate of spread of these
fuel models follows the order Model II > Model I > Model III
(Table 2). The conditions of the fuel models are described as follows:
(1) Model I: Wet, cool north-facing slopes and valleys dominated by
two shrubs, Ledum palustre and Vaccinium uliginosum (up to 0.4 m
tall), with little herbaceous cover. Fuel loads are high and more
contiguous but less flammable than in other models due to lower
FBDb (m) MEDFc (%) D/LHCd (kJ/kg)

Live

2.58/3448 0.20 60 23,281/21,866
1.14/3790 0.15 37 20,644/21,112

13.41/3448 1.22 55 21,052/21,541



Table 2
Estimated rate of spread (ROS, m min−1) for the three fuel models over a range of
slope and wind conditions using the Behave Plus fire modeling system. In increasing
order of ROS, there are Model II, Model I and Model III.

Fuel Model Wind speed (km/h)

0.0 4.0 8.0 15.0 20.0 30.0

Slope = 2°
I 1.1 9.3 21.1 45.8 65.8 110.1
II 0.9 3.5 10.5 32.3 54.9 116.8
III 0.9 3.6 9.9 27.8 45.3 90.8

Slope = 7°
I 1.5 9.7 21.5 46.2 66.2 110.5
II 1.1 3.7 10.7 32.5 55.1 117.0
III 1.1 3.8 10.1 28.0 45.5 91.0

Slope = 12°
I 2.4 10.6 22.4 47.1 67.1 111.4
II 1.5 4.1 11.1 32.9 55.5 117.4
III 1.5 4.2 10.6 28.5 46.0 91.5

Slope = 17°
I 4.0 12.1 23.9 48.7 68.7 112.9
II 2.3 4.9 11.9 33.7 56.3 118.2
III 2.3 5.0 11.3 29.2 46.7 92.2

Slope = 24°
I 7.0 15.2 27.0 51.7 71.7 116.0
II 3.8 6.4 13.4 35.2 57.8 119.7
III 3.8 6.5 12.8 30.8 48.3 93.7
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flammability and higher moisture content. (2) Model II: Dry
south-facing slopes mainly dominated by the shrub Rhododendron
dauricum (up to 2.0 m tall) but also with herbaceous ground cover.
Fuel loads are lower than on north-facing slopes but more flammable
due to the fineness of fuels. (3) Model III: Ridge tops (elevations
>800 m) dominated by P. pumila (up to 4–5 m tall), with an under-
story of L. palustre and V. uliginosum (up to 0.4 m tall) (Wu et al.,
2011a). Details for the fuel model map parameters (e.g., fuel load,
fuel bed depth and Dead/Live heat content) are presented in
Table 1. During both FARSITE and LANDIS simulations roads were
considered as nonfuel; these were delineated on the fuel map.

2.3. Deriving of burn probability map

The burn probability distribution map was derived using LANDIS.
LANDIS is a raster-based, spatially explicit forest landscape simulation
model that can simulate disturbance, succession, and forest manage-
ment at large spatial (103 to 106 ha) and temporal scales (101 to
103 years) (He et al., 2005). We first derived a fire occurrence density
map with spatial point pattern analysis of historical fire locations
from 1990 to 2005. The derived fire occurrence density map provided
input for the LANDIS model to predict burn probability. The model
accounts for both future fire occurrence and spread location. The
inputs for the model were vegetation, fuel, topography, weather and
historical wildfire regime. We parameterized 8 tree species (e.g. fire
tolerance classes) and 7 land types in which each species is assumed
to respond uniformly with respect to mean fire size and fire return
interval. Since the focus of this study was to compare approaches to
current fuel treatment scenarios, we ran LANDIS simulations for
only a single 10-year interval (2006–2016). Moreover, we assumed
that vegetation and fuel remained relatively constant during the
10-year simulation period. Finally, the estimated burn probability
map was validated based on historical burned patches from 2006 to
2009 by using the chi-square test.

In the LANDIS model, wildfire occurrences consist of two process-
es: fire ignition (a wildfire occurrence) and fire initiation (becoming a
wildfire). The ignition attempts across a landscape were simulated
based on the occurrence density map. Whether an ignition continued
on into an initiation or not was determined by fuel and vegetation
characteristics at the site (Yang et al., 2004, 2008). Once initiated,
fire spread was simulated using the minimum travel time algorithm
(MTT). This algorithm is an expedient method that solves for arrival
time of the fire front from a set of source cells (Finney, 2002). The al-
gorithm involves the calculation of rate of spread for each cell with
respect to fuel type (fuel model), wind, and slope conditions (Yang
et al., 2008). We calculated equilibrium head-fire spread rates
for each fuel model for all possible combinations of fuel moisture,
wind, and topography with the Behave Plus fire modeling system
(Andrews et al., 2008). LANDIS then reads in equilibrium head-fire
rates of spread for all the combinations before fire spread simulations
start. Thus, the raster-based MTT used in LANDIS produces results
similar to the vector-based fire growth predictions in FARSITE. Addi-
tional information on how the LANDIS simulates fire burn probability
is available in Yang et al. (2008).

To account for the stochasticity of fire occurrence, LANDIS simula-
tions were replicated 200 times. Burn probability was defined as the
proportion of the number of replicates in which the cell was burned
to the total number of replicates for 10-year simulation intervals.
Our burn probability is a conditional burn probability that is the
probability of a fire burning an area of pixel given that a fire burns
the area of interest. The derived burn probability thus considers
every pixel containing a probability value, and thus reflects the
probability of burning at a particular location. From that, fuel treat-
ment locations can be prioritized (Fig. 2).

2.4. Design of fuel treatment scenarios

Both fuel-load-based and burn-probability-based fuel treatments
consisted of six treatment intensities (percent of area treated) and
two treatment prioritization approaches. The fuel treatment intensi-
ties were constrained to 10, 20, 30, 40, and 50% of the areal extent
of the study area. In each case, the fuel treatment consisted of remov-
ing 50% of surface fuel loads and bed-depths. It was assumed there
was no change in canopy cover and bulk density (Stephens, 1998).
This fuel treatment was based on the observation of local forest and
fuel management practices. In the study area, there is no fuel treat-
ment practices currently implemented for reducing crown fuels.
Surface fuels are treated by crews using hand tools such as chainsaw
and chopper (no prescribed burns). This fuel treatment with hand
tools does not change the crown fuel attributes. There was no
recurrent treatment applied over the course of each fuel treatment
scenario.

The treatment scenarios based on fuel loads were assigned the
highest treatment priorities in areas where fuel loads were highest.
Similarly, the treatment scenarios based on burn probability were
assigned the highest treatment priorities in areas where burn proba-
bilities were highest. While selecting fuel treatment locations, we
employed road accessibility as a secondary criterion when rankings
of fuel loads or burn probability were the same. The 0% treatment
intensity (Notreat) was a baseline scenario representing the current
situation (without fuel treatment). Spatial distributions of fuel treat-
ment units were mapped (Fig. 3).

2.5. Wildfire simulations

We used the FARSITE model to simulate fire spread process.
FARSITE requires five raster-based themes (elevation, slope, aspect,
fuel models, and canopy cover) and three crown fuel themes (stand
height, crown base height, and crown bulk density), as well as mete-
orological files (Finney, 1998). More information on the FARSITE
model can be obtained from Finney (1998).

The variables of elevation, slope, and aspect were extracted from
the digital elevation model (DEM). Three fuel models were created
and parameterized as fuel load distribution maps (Fig. 1). The



Fig. 2. The steps used to facilitate comparing the effectiveness of fuel reduction treatments based on burn probability vs. fuel load.
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crown fuel attributes (canopy cover, stand height, crown base height,
and crown bulk density) were derived from local knowledge as well
as our own field samples and published literatures. The canopy
cover (0–100%) and stand height were derived from the stand map
of the China Forest Management and Planning Inventory (FMPI) data-
base (conducted every 10 years). The canopy cover in each stand was
estimated with 1–6 plots (10 m × 60 m). The stand map was in the
form of a polygon with an average size of 26.2 ha. The crown base
Fig. 3. Maps of treatment units of fuel treatment scenarios for two fuel treatment prio
height (m), crown extent and length (m) were collected in the field
sample plots each with 20 m × 20 m. The crown biomass (kg) was
estimated using an algometric equation developed by Yu et al.
(2010). The crown volume (m3) was estimated using a regression
equation developed by Chen et al. (2003). Both Yu et al.'s (2010)
and Chen et al.'s (2003) works were developed for much larger
region. The crown fuel variability was assumed to be small within a
fuel model. We therefore set constant values of the crown fuel
ritization approaches. 10, 20, 30, 40, and 50% stand for fuel treatment intensities.

image of Fig.�2
image of Fig.�3
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parameter series (stand height, crown base height, and crown bulk
density) for each of the three fuel models. The spatial resolution of
all the raster inputs of the FARSITE model was 90 m × 90 m.

Meteorological inputs to the FARSITE model are weather, wind,
and fuel moisture. Weather inputs include minimum and maximum
daily air temperature, relative humidity, and precipitation; and
wind input files include wind speed, wind direction, and cloud
cover (Finney, 1998). Meteorological inputs were derived from his-
torical wildfire records from 1965–2005 (including ignition location,
cause, duration, and size) and suggestions from local forest and wild-
fire managers. The extreme wildfire weather that would most likely
result in “catastrophic wildfire” was used in the simulations for pre-
and post-treatment situations (Table 3). Simulations of wildfire
spread were run for 24 h because most wildfires were suppressed
in that time interval based on historical wildfire records in the Great
Xing'an Mountains. During the simulation period, temperature and
humidity are assumed to respond inversely over time as approximated
by a cosine curve spanning maxima and minima values (Finney, 1998).
We used a 24 h conditioning period to adjust fuel moisture prior to the
start of simulations (Finney, 1998).

We evenly placed 100 ignitions across the landscape to cover the
combinations of fuel models and topography variations, while
maintaining computation efficiency of the FARSITE model. Each igni-
tion point was assigned a numerical identification number (1–100)
from northwest to southeast (Fig. 1). The 100 points were then sepa-
rately used in the FARSITE model as the ignitions for wildfire spread
simulation. In all treatment scenarios, we used the same wildfire igni-
tion points. Model parameters for the simulations were set to a time
step of 30 min, perimeter of 60 m, and distance resolution of 30 m
to obtain the expected spatial and temporal resolutions of simulation.
We set the 5% ignition probability for the spot fires during all the
simulations. During the simulations, we did not consider the effects
of fire suppression and roads that were considered as nonfuel.
2.6. Validation of model prediction results

Validating how the burn probability map reflects the actual
burned patterns provided insight into the reliability of model predic-
tions. We used the 2006–2009 burned patches (n = 55) to validate
the LANDIS-derived burn probability map (where probabilities
ranged from 0 to 0.12 with a mean of 0.0175). We then determined
whether burned patches were located in areas with high burn proba-
bilities (i.e. > 0.035, which accounted for 10% of the landscape). After
this determination was made the 55 burned patches were overlain on
the simulated burn probability map. We then identified the areas
with probabilities lying above and below the threshold value of
0.035 across all 55 burned patches. Finally, we used chi-square to
test for association between areas above and below the threshold
Table 3
Weather and fuel moisture parameters used in wildfire simulations.
These weather data were collected from the Huzhong weather
station from 1972 to 2005.

Variables Value

Precipitation (mm) 0
Low temperature (°C) 15
High temperature (°C) 28
High relative humidity (%) 25
Low relative humidity (%) 15
Wind speed (km/h) 30
Wind direction (degree) 245
1-h fuel moisture (%) 3
10-h fuel moisture (%) 4
100-h fuel moisture (%) 5
Herbaceous moisture (%) 70
Live woody moisture (%) 70
probability of 0.035 across the 55 burned patches and across the
simulated burn probability map for the entire study area.

We calibrated the FARSITE simulations under the Notreat treatment
scenario using the weather, fuel and simulation period parameters. The
simulated wildfire fire size, rate of spread and intensity were compared
to historical fire data from 1965 to 2005 in the Great Xing'anMountains
in northeastern China. We used only historically burned areas and fire
size to calibrate FARSITE because we lacked observed data on wildfire
behavior (e.g. rate of spread and fire intensity).We selected the calibra-
tion fires that burned approximately 24 h (standard deviation being
5.4). Consequently, we set our average fire simulation time at 24 h for
comparing with the actual fires. The significance of difference between
wildfire sizes on historical burn simulations was tested by non-
parametric Mann–Whitney U test with SPSS 13.0 software.

2.7. Comparing effects of fuel load based and burn probability based
treatments

Wildfire size (ha), rate of spread (m min−1) and fire intensity
(kW m−1) are important in wildfire management decision-making.
We compared amount and rate of decline in these three variables
among the various fuel reduction scenarios of the two fuel treatment
priorities. Significant differences in responses among fuel treatment
scenarios were tested by non-parametric Kruskal–Wallis tests with
SPSS 13.0 software. Because there was a range of values in rate of
spread and fire intensity across burned pixels for each simulation,
the mean values of these variables for the 100 ignitions are presented
along with their standard errors.

3. Results

3.1. Validation of burn probability map and simulated fires

On average, there were 59.1 simulated wildfires per decade over
the entire landscape. The standard deviation for the simulations was
±8.5 fires per decade, or about 14.4% of the mean. The LANDIS-
derived burn probability map was validated with the actual 2006–
2009 burned patches. The chi-square test result (chi-square =
2549.817; p b 0.001) indicated that locations with high burn probabil-
ity (>0.035) had more fires burned there (“hot spots”) (Fig. 4).

We calibrated the FARSITE simulations under the Notreat (no fuel
treatment) scenario using historical wildfire data on fire size from
1965 to 2005 in the Great Xing'an Mountains. Average wildfire size
of historical fire data was compared to the FARSITE simulations in
Table 4. The comparisons reveal that simulated average wildfire size
was close to the historical average from 1965 to 2005. Parameters
calibrated in FARSITE thus appear to realistically simulate fire
patterns within the study area, which suggests they can be extended
to simulating wildfire size and intensity under our defined fuel treat-
ment scenarios.

3.2. Comparing effects of fuel load based and burn probability based
treatments

Treatment scenarios based on both fuel loads and burn probability
reduced wildfire size and intensity compared to Notreat as treatment
intensity increased (Table 5). However, the effectiveness of the two
fuel treatment prioritizations on reducing wildfire size and intensity
differed greatly (Fig. 5). Treatment scenarios based on burn probabil-
ity were considerably lower in wildfire size, and mean and maximum
rate of spread than those based on fuel load for a given treatment
area. For example, mean and maximum rate of spread under treat-
ment scenarios for burn probability were, respectively, 0.55 and
6.35 m min−1 lower than those based on fuel load.

Moreover, rates of reduction in wildfire size and mean and maxi-
mum rate of spread were more acute for treatment scenarios based



Fig. 4. Map of estimated burn probabilities. We defined burn probability as the probability of burning at least once per decade per 0.81-ha sample cell. (a) Overlay showing roads
and areas of high burn probability (burn probabilities > 0.035). Areas with high burn probabilities accounted for about 10% of the total study area. (b) Overlay showing observed
patches that actually burned between 2006 and 2009.
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on burn probability than those based on fuel load (Fig. 5). For example,
as treatment intensity increased, the decline in average wildfire size in-
creased from 7 to 31% under treatment scenarios based on fuel load;
based on burn probability, fire size declined from 10 to 42% with
increasing treatment area. The decline in average rate of spread with
increasing treatment area ranged from 1 to 7% under fuel-load scenar-
ios and from 5 to 25% based on burn probability. The simulations also
revealed that fuel treatments based on burn probability were more ef-
fective at reducing large wildfire size and high spread rate (Table 5).
Note that as treatment area increased, the effectiveness of treatments
based on burn probability was more obvious when treated areas
exceeded 40% of the area compared to treatments based on fuel load
(Table 5; Fig. 5). Our results further confirmed those that Finney
found that when fuel treatments were randomly assigned to a land-
scape, we need to treat a very large area before achieving the reduction
in potential fire behavior (Finney, 2007).

Fuel treatments based on burn probability also were more effective
at reducingmean fire intensity, but less effective at reducingmaximum
fire intensity than treatments based on fuel load when the treated area
was b50% of the forested landscape. For example, the decline in maxi-
mum fire intensity with increasing treatment area ranged from 9 to
17% under treatment scenarios based on fuel load and from 2 to 13%
for those based on burn probability (Table 5; Fig. 5).

4. Discussion

4.1. Treatment schemes of two fuel treatment prioritization approaches

The differences in the two analytical approaches to predicting fire
size and intensity could be attributed to differences in fuel treatment
schemes. Generally, fuel load is the primary factor that determines
Table 4
Comparison of FARSITE simulations with historical wildfire data from 1965 to 2005.
The significance of difference between wildfire size based on historical records and
simulations was tested by non-parametric Mann–Whitney U test with SPSS 13.0
software.

Items Mean wildfire size (ha ± S.E.) Number of fires

Historical fire-data 7341.10 ± 878.47 85
FARSITE simulation fire 7677.38 ± 573.75 100
Significance (2-tailed) p > 0.01 –
wildfire intensity and area; as fuels increase, fire intensity increases
(Sah et al., 2006). For example, Sah et al. (2006), in studying the
relationship between fuel loads and fire regimes in pine forests of
the Florida Keys, found that fire intensity increased with surface fuel
loads. These conclusions were similarly confirmed by our study,
which showed that maximum fire intensity increased with increasing
fuel load (Table 5; Fig. 5). However, fuel treatments based on fuel load
were less effective at reducing mean fire intensity, fire size, and mean
and maximum rate of spread than treatments based on burn proba-
bility. This outcome resulted because the emphasis is placed on fuel
hazard in defining fuel treatments based on fuel load, and ignoring
fire spread.

Areas with heavy fuel loads did not necessarily burn at high
spread rates or cover large areas (Finney, 2001, 2005; Yang et al.,
2008). This is because wildfire is a spatial process that is not only
related to fuel load, but is also affected by spatial controls such as
human activity, topography and weather conditions (particularly
wind direction and speed) (Mermoz et al., 2005). For example, Yang
et al. (2008) analyzed spatial controls of wildfires in the Missouri
Ozark Highlands and concluded that human accessibility and land-
ownership were the primary limiting factors in shaping wildfire loca-
tion whereas vegetation had negligible influence. Wildfire ignition
and spread probabilities usually occur in places where fuel loads are
directly related to fire intensity (Finney, 2005; Miller et al., 2008;
Parisien et al., 2007). Fuel treatments based on burn probability in
this study have incorporated fuel load, ignition probability, and
spread probability (all of which are spatially controlling) (Ager et
al., 2010b; Miller et al., 2008; Pollet and Omi, 2002). Since ignition
and spread probabilities account for the places where fires are most
likely to occur and fuel load is directly related to fire intensity (and
thus burn severity), burn probability as used in this study has already
accounted for fire intensity and fire effects. Thus, our fuel treatments
based on burn probability were probably more effective at reducing
wildfire size and intensity than those based on fuel load (Ager et al.,
2010b).

Nevertheless at present, most fuel treatments focus on reducing
fuel load at the site or stand level (Reinhardt et al., 2008). Those stud-
ies often assumed that spatial patterns of wildfire spread are
completely random, and therefore the effects of spatial controls (e.g.
topography) on fire occurrence and spread are ignored or simplified
(Agee and Skinner, 2005; Finney, 2007). Studies showed that
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Table 5
Simulation results of average value (mean and maximum) (±S.E.) of wildfire size, rate of spread and fire intensity for each treatment scenarios of the 100 ignitions. BPtreat: based
on burn probability; FLtreat: based on fuel load. 10, 20, 30, 40, and 50% stand for fuel treatment intensities.

Scenarios Wildfire size (ha) Rate of spread (m min−1) Fire intensity (kW m−1)

Mean Maximum Mean Maximum

Notreat 7677.34 ± 573.75 4.83 ± 0.26 64.86 ± 4.70 942.78 ± 47.52 21932.56 ± 2109.46
FLtreat-10 7116.85 ± 553.94 4.80 ± 0.28 63.17 ± 4.67 895.33 ± 45.68 19410.34 ± 1658.48
FLtreat-20 6718.30 ± 534.88 4.75 ± 0.28 61.80 ± 4.69 880.27 ± 51.74 20017.65 ± 1894.01
FLtreat-30 6230.04 ± 538.48 4.68 ± 0.29 59.83 ± 4.73 838.97 ± 53.09 19637.41 ± 2061.28
FLtreat-40 5619.62 ± 514.47 4.57 ± 0.31 58.40 ± 4.86 802.61 ± 54.52 18108.38 ± 1950.28
FLtreat-50 5298.43 ± 505.78 4.50 ± 0.31 57.02 ± 4.81 783.56 ± 56.80 17257.53 ± 1794.80
BPtreat-10 6946.30 ± 541.45 4.59 ± 0.24 62.76 ± 4.86 869.68 ± 42.31 21525.13 ± 2160.32
BPtreat-20 6369.34 ± 512.07 4.32 ± 0.23 58.06 ± 4.69 779.98 ± 37.03 20243.05 ± 2081.18
BPtreat-30 5837.13 ± 472.49 4.07 ± 0.21 55.21 ± 4.39 686.57 ± 28.99 20022.71 ± 2020.56
BPtreat-40 5150.02 ± 439.32 3.83 ± 0.19 49.39 ± 4.11 610.17 ± 25.72 19052.59 ± 2078.14
BPtreat-50 4445.16 ± 505.78 3.60 ± 0.19 42.97 ± 3.72 535.57 ± 23.33 16182.77 ± 1766.80
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stand-level fuel treatments can create artificial forest and fuel con-
structs that are more resilient to wildfires. But a key knowledge gap
in fuel treatment design is related to problems associated with the
question of how isolated stand-level fuel treatments can be scaled
up to landscape level, and also how the spatial arrangement of fuel
treatments affects wildfire spread at the landscape level (Schmidt et
al., 2008). To achieve this objective, fuel treatments need to consider
the effects of spatial controls on patterns of wildfire spread.

Fuel treatment location can be optimized using various methods
(schools of thoughts) such as mathematical programming algorithm
and fire model simulation. For example, Finney (2007) used a mini-
mum travel time (MTT) algorithm to identify major fire travel routes
(areas needing treatment) and their intersections with areas where
fuel treatment occurred and reduced the spread rate (opportunity
for treatment). Wei et al. (2008) used a mixed integer programming
Fig. 5. Reduction in fire size, rate of spread, and fireline intensity in relation to fuel reductions
characteristics were tested by paired-samples t-test with SPSS 13.0 software. The p values
(MIP) formulation to locate fuel treatments with the aim to break
fire risk accumulation following major wind directions. Fuel treat-
ments that are based on mathematical programming algorithm
often focus on maximum interruption or reducing of fire's rate of
spread by placing the fuel treatment units in the predominant fire
spread direction over a range of topography, fuel and weather condi-
tions (Finney, 2002, 2007; Konoshima et al., 2010; Wei et al., 2008)
Therefore, the mathematical algorithm is particularly designed and
useful to identify fuel treatment locations for the purpose of
interrupting or slowing fire spread to some important areas such as
natural reserves and wildland urban interfaces (WUI). Compared to
mathematical programming algorithm, our optimization procedure
based on firemodel (FARSITE and LANDIS) simulation has incorporated
both the potential fire occurrence and spread ability into the identi-
fication of critical fuel treatment locations across the landscape. Our
for burn probability and fuel load models. Differences in reductions of the specified fire
refer to significance of differences between fuel load and burn probability models.
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optimization procedure is much more a strategic fuel treatment
allocation across the entire forest landscape and is not specific for a
given area such as the WUI.

4.2. Utility of burn probability

Despite its recent development and application, the utility of burn
probability to assist wildfire and fuel management as a tool for mitigat-
ing the harmful effects of wildfires has beenwidely reported (Ager et al.,
2007a; Parisien et al., 2007). Burn probability can be used to guide
implementation of strategic wildfire and fuel management activities.
In practice, once potential burn probability distributions are identified,
managers can use this information as input into a fire simulation
program such as FARSITE to evaluate where and what kind of wildfire
management actions may be most effective at achieving defined protec-
tion objectives. For example, Ager et al. (2010a, 2010b) used burn prob-
ability to calculate wildfire risk profiles for each of the 170 residential
structures within the urban interface, and to estimate the expected
wildfire mortality for large tress.

Moreover, burn probability can be used as a criterion for quantify-
ing the effectiveness of fuel and fire management activities. For exam-
ple, Ager et al. (2007b) employed burn probability as one of the fire risk
variables used to evaluate landscape-level fuel treatment strategies in
the urban interface of the Mt. Emily wildlands in Oregon. Their study
showed that burn probability decreased linearly with increasing treat-
ment intensity. The highest burn probabilities occurred where no fuel
reduction treatments were applied. Burn probability also has been
used to identify relations between the occurrence of spatial controls
and the spread of wildfires. For example, Parks et al. (2011) examined
the scale-dependent relation between spatial burn probability and
some key environmental controls in the southern Sierra Nevada Moun-
tains of California. They concluded that the statistical relation between
burn probability and explanatory variables fluctuates across spatial
scales, as does the influence of explanatory variables.

Although some burn probability models have been developed (e.g.,
Burn-P3 and Fire Spread Probability model), there is no generally
accepted burn probability model. The burn probability model develop-
ments (algorithm), application and validation are problems that need
further research. For example, when wildfire occurrence and spread
vary greatly with forest fuel composition and succession, burn proba-
bilities should be developed to reflect these dynamic (time-dependent)
changes in fuels across fire seasons. Generally, clarifying which
modeling approaches are most appropriate for a given management
objectives is critical (Miller et al., 2008).

4.3. Some limitations and future directions

Although the results from this study could be used for a range of
forest and fire management activities, they have limitations. Ideally,
the effects of fuel treatments should be measured not only by the
resulting reductions in wildfire size and intensity but also by their
direct effects on ecological and social values (e.g. ecological processes
and habitat lost) (Ager et al., 2010a, 2010b; Calkin et al., 2010; Finney,
2005). Our assessment of the effects of fuel treatments based on
wildfire size and intensity may be weak or strong depending on
their direct ecological effects. For example, Ager et al. (2010a,
2010b) modeled effects of fuel treatments on northern spotted owl
(Strix occidentalis caurina) habitat in Central Oregon, USA and
observed a non-linear decrease in the probability of habitat loss
with increasing treatment area. Thus, in future studies, ecological
and social values associated with fuel treatments should be considered.
These include habitat loss, tree mortality, and damage to human
infrastructure (Finney, 2005).

We overlaid the 100 ignitions on the fuel model map to analyze the
effects of ignition location on wildfire simulations. Most of the larger
wildfires and intensities resulting from ignitions occurred on the
northeastern and southern edges of the study area where fuels were
most hazardous (Fuel Model III). Ignitions in the central portion of
the study area were associated with less hazardous fuels (Fuel Model
I) and spread at lower rates than other fuel models. These results
show that fire size and intensity vary greatly by ignition location. Igni-
tion locations with high fuel loads (once ignited under favorable
weather conditions such as high wind speed and temperature) usually
produced large, high intensity fires. However, we have not specifically
investigated the relationship between ignition location and topogra-
phy. Previous research in the study area suggests that ignitions on
south-facing slopes and upper mountain ridges tend to produce larger
fires (Wu et al., 2011a). Fire management efforts accordingly should be
allocated to those areas most prone to fire.

Factors not accounted for in our study also may have influenced
study results, especially those related to treatment costs. Costs related
to financial and human resources are important considerations in de-
signing and prioritizing fuel treatments. For example, Liu et al. (2010)
designed a cost-efficiency measure to compare fuel treatment effi-
ciency in different settings. They concluded that cost effectiveness
of fuel treatments varied by treatment area and forest type.
Reinhardt et al. (2008) pointed out the challenge of estimating the
costs and benefits of fuel treatments. Yet despite this difficulty, the in-
fluence of investment needs to be considered when making fuel and
fire management decisions. Therefore, further researches are needed
on how to best allocate fuel treatments under current limited
resources for fire control.

Large variability and uncertainty in weather conditions influence
fire ignition and spread. Fire simulation results based on extreme
weather conditions therefore should be interpreted cautiously when
applied to other weather conditions (not the weather conditions
used in our study). Moreover, we set the burn period of 24 h to fire
simulation. In the future, we need to compare the effectiveness of
fuel treatment optimization strategies (based on burn probability vs.
fuel load) under longer burning period.

5. Conclusions

Assessing the effectiveness of landscape fuel treatments is essen-
tial in making fuel and fire management decisions. Our study indicat-
ed that fuel treatments based on burn probability may be more
effective at reducing wildfire size, mean and maximum rate of spread,
and mean fire intensity, but less effective at reducing maximum fire
intensity than those based on fuel accumulation. Burn probability
therefore may be more effective at achieving specific forest resource
protection objectives.

There are many optimization procedures that can help with the
assignment of fuel treatment locations such as the minimum travel
time algorithm (MTT) incorporated in the FlamMap fire behavior
model (Finney, 2002). Those fuel treatment location optimization
procedures based on reducing fire spread in the fastest corridors be-
long to the “school of thought” of using the mathematical program-
ming (Finney, 2007; Konoshima et al., 2010; Wei et al., 2008). Our
study based on burn probability provided an alternative to the fuel
treatment optimizing strategy through running fire simulation
models (LANDIS and FARSITE). However, because this strategy
based on burn probability is relatively new in fire management,
burn probability models and their application require further testing
and assessment to their reliability. Moreover, it is important to clarify
for users that models and approaches need to be evaluated with re-
spect to local fire occurrence and fuel conditions.
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