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Integrating forest inventory data and MODIS data to map
species-level biomass in Chinese boreal forests
Qinglong Zhang, Hong S. He, Yu Liang, Todd J. Hawbaker, Paul D. Henne, Jinxun Liu, Shengli Huang,
Zhiwei Wu, and Chao Huang

Abstract: Timely and accurate knowledge of species-level biomass is essential for forest managers to sustain forest resources and
respond to various forest disturbance regimes. In this study, maps of species-level biomass in Chinese boreal forests were
generated by integrating Moderate Resolution Imaging Spectroradiometer (MODIS) images with forest inventory data using k
nearest neighbor (kNN) methods and evaluated at different scales. The performance of 630 kNN models based on different
distance metrics, k values, and temporal MODIS predictor variables were compared. Random Forest (RF) showed the best
performance among the six distance metrics: RF, Euclidean distance, Mahalanobis distance, most similar neighbor in canonical
correlation space, most similar neighbor computed using projection pursuit, and gradient nearest neighbor. No appreciable
improvement was observed using multi-month MODIS data compared with using single-month MODIS data. At the pixel scale,
species-level biomass for larch and white birch had relatively good accuracy (root mean square deviation < 62.1%), while the other
species had poorer accuracy. The accuracy of most species except for willow and spruce was improved up to the ecoregion scale.
The maps of species-level biomass captured the effects of disturbances including fire and harvest and can provide useful
information for broad-scale forest monitoring over time.

Key words: species-level biomass, MODIS, Chinese boreal forest, Random Forest (RF), kNN.

Résumé : Une connaissance précise et en temps opportun de la biomasse de chaque espèce est essentielle pour permettre aux
aménagistes forestiers d’effectuer un aménagement durable des ressources forestières et pour s’ajuster aux divers régimes de
perturbations forestières. Dans cette étude, des cartes de biomasse par espèce ont été générées dans les forêts boréales chinoises
en intégrant des images MODIS (spectroradiomètre imageur à résolution moyenne) à des données d’inventaire forestier au
moyen de l’approche des k plus proches voisins (kNN) et évaluées à différentes échelles. Les performances de 630 modèles kNN
ont été comparées en fonction de différentes métriques de distance, valeurs de k et variables prédictives temporelles de MODIS.
Les forêts d’arbres décisionnels (RF) ont fait ressortir les meilleures performances parmi les six métriques de distance : la distance
RF, la distance euclidienne, la distance de Mahalanobis, le plus proche voisin dans l’espace de corrélation canonique, le plus
proche voisin calculé par poursuite de projection, et le plus proche voisin par gradient. L’utilisation de données MODIS sur
plusieurs mois n’a apporté aucune amélioration notable en comparaison de l’utilisation des données MODIS d’un seul mois. À
l’échelle des pixels, la biomasse par espèce avait une précision relativement bonne pour le mélèze et le bouleau blanc (écart
quadratique moyen < 62,1 %), tandis que la précision était plus faible pour les autres espèces. Pour la plupart des espèces, à
l’exception du saule et de l’épinette, la précision s’est améliorée jusqu’à l’échelle de l’écorégion. Les cartes de la biomasse par
espèce ont capté les effets des perturbations, y compris les feux et la récolte, et peuvent fournir des informations utiles pour la
surveillance des forêts à une vaste échelle au fil du temps. [Traduit par la Rédaction]

Mots-clés : biomasse par espèce, spectroradiomètre imageur à résolution moyenne (MODIS), forêt boréale chinoise, forêts d’arbres
décisionnels (RF), méthode des k plus proches voisins (kNN).

1. Introduction
The boreal forest is the second largest terrestrial biome in the

world, covering 33% of forest area and holding 23% of terrestrial
carbon stocks (Carlson et al. 2009; Ji et al. 2015). The Chinese
boreal forest in the Great Xing’an Mountains of northeastern
China is the southern extension of the eastern Siberian light co-

niferous forest, covering about 11.2% of forest areas in China (Xu
1998). Disturbance by fire and timber harvest have extensively
altered forest structure and biomass in this region from stand to
landscape scales (Luo et al. 2014; Wu et al. 2013; Xu 1998). Timely
and accurate knowledge of species-level biomass in this area is
essential for forest managers to design effective forest manage-
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ment plans to sustain forest resources and respond to changes due
to various disturbances.

Species-level forest biomass is typically derived from forest inven-
tory data, which may be limited in space and time; therefore,
remotely sensed data are increasingly used to generate spatial
records of forest attributes (He et al. 1998; Shataee et al. 2012;
Zald et al. 2014; Zhang et al. 2009). Whereas high-resolution opti-
cal remotely sensed images (e.g., aerial photographs, IKONOS,
WorldView2) and light detection and ranging (lidar) data can derive
more accurate species-level forest biomass than coarse-resolution
images (e.g., Moderate Resolution Imaging Spectroradiometer,
MODIS) (Pu and Landry 2012; van Ewijk et al. 2014; Zellweger et al.
2013), it is often challenging to obtain and analyze high-resolution
images over large regions due to their limited spatial and temporal
coverage. However, coarse-resolution sensors, with large swath
widths, moderate pixel sizes, and near-daily coverage, are efficient
for deriving information over large areas (Wilson et al. 2012).

Researchers often integrate field inventory data with coarse-
resolution imagery through imputation models to map detailed
forest attributes over large areas (Beaudoin et al. 2014; Blackard
et al. 2008; Huang et al. 2017; Wilson et al. 2012; Zhang et al. 2014).
One widely used approach is k nearest neighbor (kNN) imputation
(Tomppo et al. 2008; Zald et al. 2014), which uses a set of predictor
variables (x) to determine a number (k) of most similar reference
observations (nearest neighbors or NN) to derive response vari-
ables (y) for the target pixel (Crookston and Finley 2008; McRoberts
2012; Ohmann et al. 2011). Predictor variables can include multi-
spectral satellite imagery and other datasets (e.g., climate, topo-
graphy, soil) that are spatially complete, while response variables
are only available for limited sites in the study area and usually
include measures of forest composition or structure derived from
field plots. In kNN imputation, either a single reference observa-
tion (k = 1) or multiple reference observations (k > 1) can be chosen to
assign response variable values to a given target pixel (Beaudoin et al.
2014;Duvenecketal. 2015;Hudak et al. 2008; McRoberts 2012; Moeur
and Stage 1995; Ohmann and Gregory 2002; Ohmann et al. 2011;
Wilson et al. 2012). A major strength of NN imputation where k = 1
is the retention of the covariance structure of multiple response
variables, because each target is only linked to a single reference
(McRoberts 2012; Zald et al. 2014); however, root mean square
errors (RMSE) are generally higher when selecting small values of
k, especially for k = 1, and RMSE is sometimes greater than the
standard deviation of the response variable observations, meaning
that the overall mean as a prediction for every target element is
better at minimizing RMSE than the kNN predictions (McRoberts
2012). Predictive accuracy increased with k in previous studies
(McRoberts 2012; Muinonen et al. 2001; Wilson et al. 2012).
Muinonen et al. (2001) reported that the bias was unstable with k
increasing when k < 8. Muinonen et al. (2001) and McRoberts (2012)
suggested balancing the greater imputation accuracy with the
expense of modifying the covariance structure. Therefore, select-
ing a reasonable k is also necessary for maximizing the accuracy
and efficiency of the kNN imputation method. Since Tomppo and
Katila (1991) first proposed the kNN method for applications in
forestry using satellite data, it has been widely applied to impute
many different forest attributes worldwide (McRoberts 2009;
Ohmann and Gregory 2002; Temesgen et al. 2003; Wilson et al.
2012). Many alternative kNN distance metrics have been used for
associating target and reference pixels, e.g., canonical correlation
analysis most similar neighbor (MSN) (Moeur and Stage 1995),
gradient nearest neighbor (GNN) using canonical correspondence
analysis (CCA) (Ohmann and Gregory 2002), Euclidian distance
(McRoberts 2009; Tomppo and Katila 1991), and metrics based on
ensemble machine learning methods such as Random Forest (RF)
(Breiman 2001; Hudak et al. 2008; Zald et al. 2016). In theory, all of
the kNN distance metrics can be used to impute biomass at the
tree species level. Although Hudak et al. (2008) reported that RF
produced superior results compared with other distance metrics

when using lidar-derived predictor variables, there is still no
agreement about the best distance metric to map species-level
biomass from coarse-resolution imagery.

Imputation mapping over large areas often relies on coarse-
resolution satellite imagery as predictor variables, especially
MODIS data, which are available twice daily and globally and are
less expensive and time-consuming to produce and update com-
pared with moderate-resolution imagery (e.g., Landsat) (Wilson
et al. 2012). However, passive optical sensors such as MODIS are
often limited when estimating forest biomass because of their
lower sensitivity to vertical and below-canopy vegetation struc-
ture (Zhang et al. 2014). Some previous studies indicated that
multi-temporal optical images have the potential to improve the
accuracy of aboveground biomass (AGB) estimation (Zhu and Liu
2015). Although Wilson et al. (2012, 2013) imputed tree species and
forest carbon stocks over large areas using phenology metrics
derived from multi-temporal MODIS data, whether multi-temporal
MODIS data improve the accuracy of species-level biomass impu-
tation compared with single-temporal data has not been explored
at large scales.

The primary objective of this study was to map species-level
biomass in the Great Xing’an Mountains of northeastern China
using MODIS reflectance and vegetation indices as predictors. To
accomplish this objective, we investigated the performance of
species-level biomass imputation models based on six kNN dis-
tance metrics and different k values while using single- and multi-
month composites of MODIS data as predictor variables. Finally,
we assessed the accuracy of the predictions from pixel to regional
scales to determine what scales are most appropriate for use of
our predictions.

2. Study area and method

2.1. Study area
Our study area is located on the northern and eastern slopes of

the Great Xing’an Mountains (121°12=–127°00=E, 50°10=–53°33=N) in
northeastern China, covering about 8.46 × 104 km2. Elevations
vary from 139 m in the east to 1511 m in the west. On the whole, the
terrain of the study area is gentle and over 80% of the area has a
slope of less than 15° (Fig. 1). This region has a long and severe
continental monsoon climate with mean annual precipitation
varying in a northwestern to southeastern direction and ranging
from 240 to 442 mm; 60% or more of all precipitation occurs
between June and August. Mean annual temperature varies from
–6 to 1 °C in a northwestern to southeastern direction; the coldest
month is January, with an average temperature of –33 °C, and the
hottest month is July, with an average temperature of 17.5 °C.

The eastern Siberian boreal forest reaches its southernmost
extension in the Great Xing’an Mountains. Forests in this region
cover about 6.56 million hectares of mostly mountainous terrain.
The dominant tree species is Dahurian larch (Larix gmelinii (Rupr.)
Kuzen, hereafter larch), which is a boreal conifer and late succes-
sional species with wide distribution, occupying moist and cool
sites. White birch (Betula platyphylla Suk.), the second most widely
distributed species, is an early successional species and occupies
drier, well-drained sites (Xu 1998). Other tree species include Ko-
rean spruce (Picea koraiensis Nakai, hereafter spruce), Asian black
birch (Betula davurica Pall.), Mongolian Scots pine (Pinus sylvestris
var. mongolica Litv., hereafter pine), willow (Chosenia arbutifolia
(Pall.) A. Skv.), two species of aspen (Populus davidiana Dode and
Populus suaveolens Fischer), Mongolian oak (Quercus mongolica Fisch.
ex Ledeb.), and a shrub species (Pinus pumila (Pall.) Regel). Great
differences in forest composition, age structure, and tree density
in this region result from environmental heterogeneity and dis-
turbances such as fire and timber harvesting. Because of recent
timber harvest, mid-seral, secondary forests are the main compo-
nents of the forest landscape, except in natural reserves (Luo et al.
2014), which are mainly occupied by old-growth forests.

Pagination not final (cite DOI) / Pagination provisoire (citer le DOI)

2 Can. J. For. Res. Vol. 48, 2018

Published by NRC Research Press

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
U

N
IV

E
R

SI
T

Y
 O

F 
C

O
N

N
E

C
T

IC
U

T
 o

n 
04

/0
1/

18
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 



The growth rates of tree species in this area are strongly influ-
enced by enviromental factors determining site conditions. Xu
(1998) divided the larch forests into five forest type groups with
different growth rates based on site conditions that depend on
terrain and geomorphic factors. There are 10 forestry bureaus
(Fig. 1), and their boundaries mainly follow watershed boundaries.
In this study, 48 ecoregions were generated by integrating the
5 larch forest type groups and 10 forestry bureaus (Fig. 2a).

2.2. Data sets

2.2.1. Forest inventory data
The forest inventory data in this study were from the Chinese Na-

tional Secondary Forest Resource Inventory. We acquired 7635 forest
stand polygons (Fig. 2b) from the China Forestry Science Data
Center (http://www.cfsdc.org/), which is part of the National Sec-
ondary Forest Resource Inventory data of the Great Xing’an Moun-
tains from 1997 to 2001. The data contained stand age, mean
diameter, stand height, and stand volume density by species in
each polygon. Because growth of the boreal forest is relatively
slow, we assumed that AGB during 1997–2001 in the study area
had not changed sufficiently to affect our overall results. The area
of each polygon ranges from several to tens of hectares with rel-
atively homogeneous forest attributes. The polygon boundaries
were generated by interpreting aerial photographs according to
Chinese technical regulations for inventory for forest manage-
ment planning and design. The original coordinates of the forest
inventory data were in the Beijing 54 coordinate system. To match
the forest inventory data with the predictor variables, we trans-
formed coordinates of the forest inventory data and all of the
predictor variables into Universal Transverse Mercator (UTM)
Zone 51 north projection with the World Geodetic System (WGS)
1984 datum, using the raster package in R (R Core Team 2013).

In each polygon, stand attributes were estimated based on sev-
eral angle gauge plots (Bitterlich 1948) following a mechanical
sampling design. Each angle gauge plot was greater than 50 m
away from the stand boundary. The distance between two angle
count plots was at least 100 m. Trees with diameter at breast
height (DBH) > 5 cm were counted in each angle gauge plot (basal
area factor = 1). The DBH of each tree was transformed into volume
according to species-specific DBH–volume relationships from the
China Forestry Science Data Center (http://www.cfsdc.org/). The

volume density of each angle gauge plot was derived by aggregat-
ing all single-tree volume estimates by species counted in each
angle gauge plot. The stand volume density was estimated by
averaging the volume density of all of the angle gauge plots in
each polygon. We transformed tree species stand volume into
species-level AGB (t·ha–1, hereafter species-level biomass) in each
polygon using biomass–volume relationships (Fang et al. 1998).
Biomass values for eight tree species (larch, white birch, pine,
aspen, willow, spruce, Mongolian oak, and black birch) were se-
lected as the response variables for use in the kNN methods.

2.2.2. MODIS spectral variables
In this study, seven MODIS surface reflectance bands from

MOD09Q1 (b1–b2; 250 m) and MOD09A1 (b3–b7; 500 m) were used
as explanatory variables; they were processed into monthly data
by averaging all of the reflectance values for each month in
year 2000 and resampled to 250 m resolution using a nearest-
neighbor algorithm. Several vegetation indices (Table 1) were also
calculated from the MODIS monthly surface reflectance. Because
the reflectance was largely affected by snow cover from January to
April and from November to December, we only used the MODIS
monthly surface reflectance and vegetation indices from May
through October. Seven sets of MODIS predictors were used in this
study, including six sets of single-month MODIS composites from
May to October and one set of multi-month MODIS predictors
(containing all six sets of single-month MODIS composites). To
avoid imputing to non-forest pixels, we separated forest and non-
forest areas using the MODIS vegetation continuous fields (VCF)
product (MOD44B; 250 m) (Schmitt et al. 2009) for year 2000 and
removed areas with less than 10% tree cover.

2.2.3. Environmental variables
To reduce uncertainties in our predictions due to environmen-

tal heterogeneity, several environmental variables that were cor-
related to species-level biomass were selected as auxiliary explanatory
data, including climate variables (mean annual precipitation and
temperature from 1982 to 2009), topographic variables (elevation,
slope, and cosine of aspect (COSASP)), soil variables (bulk density,
pH, and the content of sand (%), clay (%), silt (%), gravel (%), and soil
organic carbon (%)), and geospatial location (Table 2). Elevation,
slope, and aspect were derived from the Shuttle Radar Topogra-

Fig. 1. Elevation (m) and location of the study area. The boundaries of the 10 forestry bureaus are shown with black lines. [Colour online.]
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phy Mission digital elevation model (90 m spatial resolution), pro-
vided by the International Scientific and Technical Data Mirror
Site, Computer Network Information Center, Chinese Academy
of Sciences (http://www.gscloud.cn/). Climate variables were col-
lected from the National Meteorological Center of China and
interpolated into a 1 km resolution map by Mao et al. (2012).

Geospatial location data were in the form of x and y coordinates of
each raster cell center. Soil data were extracted from Intergovern-
mental Panel on Climate Change (IPCC) default soil classes de-
rived from the Harmonized World Soil Database (Batjes 2009). All
of the environmental variables except the 90 m topographic vari-
ables were resampled to 250 m pixel resolution using a nearest-

Fig. 2. (a) Ecoregion map, (b) forest inventory data, and (c) the nearest-neighbor distance between each pixel and its nearest reference polygon from
forest inventory data with ecoregion map. The nearest-neighbor distance is calculated for each pixel from values for the spatial predictors based on
a Random Forest proximity matrix of predictor variables and uncertainty increases with the nearest-neighbor distance. [Colour online.]

Table 1. Vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data.

Vegetation
index Formula Full name Reference

NDVI5,6,9 (b2 – b1)/(b2 + b1) Normalized difference vegetation index Rouse et al. (1973)
RVI8,9 b2/b1 Ratio vegetation index Jordan (1969)
EVI 2.5(b2 – b1)/(b2 – 6b1 – 7.5b3 + 1) Enhanced vegetation index Huete et al. (2002)
MSAVI9

2b2 + 1 – 0.5�2b2 � 12 � 8�b2 � b1� Modified soil adjusted vegetation index Qi et al. (1994)

VARI5,9 (b4 – b1)/(b4 + b1 – b3) Visible atmospherically resistant index Gitelson et al. (2002)
NDWI5,8 (b2 – b5)/(b2 + b5) Normalized difference water index Gao (1996)
NDIIb66,9 (b2 – b6)/(b2 + b6) Normalized difference infrared index Hunt and Rock (1989)
NDIIb75,6,9 (b2 – b7)/(b2 + b7) Normalized difference infrared index Hunt and Rock (1989)
SAVI5,6,7,8,10 (b2 – b1)/(b2 + b1 + 0.5) × 1.5 Soil adjusted vegetation index Huete (1988)
GEMI8 n(1 – 0.25n) – (b2 – 0.125)/(1 – b2)

n = (2(b22 – b12) – 1.5b2 + 0.5b1)/(b2 + b1 + 0.5)
Global environment monitoring index Pinty and Verstraete (1992)

WDVI5,7,8 (0.2b2 – b1)/(0.2b2 + b1) Wide dynamic range vegetation index Gitelson (2004)
MSI6,7 b6/b5 Moisture stress index Rock et al. (1986)

Note: b1–b7 indicate MODIS bands. Predictor variables in bold are used in the gradient nearest neighbor (GNN) modes based on multi-month MODIS variables, and
superscript numbers represent the monthly information of the MODIS variables.

Table 2. Candidate predictor variables in this study.

Variable class and code Definition

b18 Band 1 (red, 620–670 nm)
b26,8,9 Band 2 (short-wave near-infrared, 841–876 nm)
b36,9 Band 3 (blue, 459–479 nm)
b45 Band 4 (green, 545–565 nm)
b55,7,9 Band 5 (long-wave near-infrared, 1230–1250 nm)
b65 Band 6 (long-wave near-infrared, 1628–1652 nm)
b75 Band 7 (long-wave near-infrared, 2105–2155 nm)
Vegetation indices See Table 1
PRE, TEM Mean annual precipitation and temperature from 1982 to 2009
ELEVATION, SLOPE, COSASP Elevation (m); slope (°), aspect was derived from the SRTM DEM; COSASP

is the cosine transformation value of the aspect
X Coordinate x from each raster cell center (m)
Y Coordinate y from each raster cell center (m)
SBULK Bulk density of soil (g·cm–3)
SPH pH of soil
SAND, CLAY, SILT, GRAVEL, SOC Content (%) of sand, clay, silt, gravel, and soil organic carbon in the soil

Note: SRTM, Shuttle Radar Topography Mission; DEM, Digital Elevation Model. Variables in bold are used in the gradient
nearest neighbor (GNN) modes based on multi-month MODIS variables, and superscript numbers indicate the monthly
information of the MODIS variables.
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neighbor algorithm to match the MODIS data resolution. The
90 m topographic variables were resampled to 250 m pixel reso-
lution using bilinear interpolation.

2.3. The species-level biomass imputation approach
Forest stand polygons were used as the unit of observations for

our imputation models. For both the MODIS composites and en-
vironmental predictors, we extracted the mean values of the ras-
ter cells with more than 50% of the pixel area covered by the stand
polygon. The species-level biomass of each polygon was predicted
by using these mean values in the kNN models. To reduce the
effects of disturbance events occurring between MODIS acquisi-
tion dates and inventory dates, disturbance information derived
from Landsat data from 1997 to 2001 with the vegetation change
tracker (Huang et al. 2010) was used to identify disturbed poly-
gons, and polygons that contained disturbed pixels (more than
50% pixel area was in the polygon) were excluded. This left the
undisturbed polygons (98% or 7481 out of 7635 polygons) for fur-
ther training and testing in this study. The stand polygons (Fig. 2b)
were randomly split into training and testing data (training-to-
testing ratio of 7:3). This process was replicated 20 times to reduce
the effects of the sampling variability from a single split.

Formally, the equation of kNN is as follows (McRoberts 2012):

(1) ỹi � �j�1

k
wijyj

i

where yj
i is the set of response variable observations for the k

reference set elements that are nearest to the ith target in a fea-
ture space defined by some distance metrics, wij is the weight of
the jth nearest neighbor reference, and �j�1

k wij � 1. The inverse
distance weight was selected to weight the k nearest neighbor
reference elements (Crookston and Finley 2015), which is defined
as follows:

(2) wij �
1/(1 � dij)

�j�1

k
[1/(1 � dij)]

where dij is the distance of the jth nearest neighbor reference to
the ith target. To determine whether different k values, distance
metrics, and MODIS multi-temporal data improved the accuracy
of the species-level biomass, we first built 630 kNN models based
on six distance metrics, 15 k values, and seven sets of predictor
variables (Fig. 3). The seven sets of predictor variables were seven
sets of the monthly MODIS data combined with the environment
variables (Table 2), separately. The distance metrics used in this
study are listed in Table 3. Euclidean and Mahalanobis distances
only depend on the predictor variables, and the remaining four
distance metrics depend on the correlations between the re-
sponse variables and predictor variables. We removed redundant
predictor variables for the GNN distance metric by using forward
stepwise canonical correspondence analysis (CCA) to keep signif-
icant variables (p < 0.01) using the vegan package in R (Oksanen
et al. 2009) following methods used by Ohmann and Gregory
(2002). For models using other distance metrics, we kept all
predictor variables. We calculated the generalized root mean
square distance (GRMSD) (Crookston and Finley 2015), the mean
deviation (MD), the variance ratio (VR) (Powell et al. 2010), and
the multivariate goodness of fit criterion T (McRoberts 2012) for
all of the kNN models using 20 replicates of the testing data. T is
defined as

(3) T � �p�1

m
wpTp

2

where p indexes response variables, wp is the weight of the pth
response variable (here all set equally to 1/m, where m is the num-

Fig. 3. Flow diagram of species-level biomass imputation. kNN, k nearest neighbor; RF, Random Forest; MSN, most similar neighbor; msnPP, most
similar neighbor with canonical correlation analysis; GNN, gradient nearest neighbor; MODIS, moderate resolution imaging spectroradiometer.
[Colour online.]
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ber of response variables), and Tp
2 is the variance explained for the

pth response variable by the kNN prediction. The mean values of
these measures for the 20 replicates were used as measures for
comparing model performances with different distance metrics, k
values, and spectral variable combinations. In this study, GRMSD
was the root mean square distance between imputed and ob-
served values in an orthogonal multivariate space defined by bio-
mass values of the eight tree species. MD was calculated as the
difference between the mean imputed and observed total AGB. VR
was calculated as the standard deviation of imputed total AGB
divided by the standard deviation of observed total AGB; VR values
close to 1 indicate good model performance. In the multivariate
goodness of fit criterion (T), p represented one of eight tree spe-
cies, Tp

2 was the fractional amount of variance in response variable
p explained by the kNN prediction, wp was the weight of the pth
species’ biomass, which was the percent biomass of the pth spe-
cies against the total AGB based on the observed value. The
GRMSD function is

(4) GRMSD �
�i�1

n
Di

n

where the Di is the scaled root-mean-square distance of the ith
response variable:

(5) Di � ��j�1

nr
(Oij � Pij)

2

nr

where Oij is the jth row and ith column element of the scaled
observed response variables matrix O, and Pij is the jth row and ith
column element of the scaled predicted response variables matrix
P, and nr is the row number of matrix O. The formulas of P and O
are separately defined as follows:

(6) O � O ′%*%q

(7) P � P ′%*%q

where O= is the original observed responsible variables matrix, P=
is the predicted variables matrix, %*% is the matrix product oper-
ator, and q is the weighted matrix defined as follows:

(8) q � solve(chol(cov(O′)))

where cov() is the covariance matrix function, chol() is the func-
tion to compute the Choleski factorization, and solve() is the func-
tion to return the orthogonal matrix of a matrix.

After the best imputation method, MODIS predictor variables,
and k values were determined, we computed the nearest-neighbor
distance between all pixels and the corresponding nearest refer-
ence observations and imputed species-level biomass for all pix-
els. This imputation process was finished using the yaImpute
package in R (Crookston and Finley 2015).

2.4. Accuracy assessment
The accuracy of the species-level biomass maps in this study was

assessed using a variety of methods designed to identify various
measures of species biomass and composition at the pixel, ecore-
gion, and regional scales. All analyses were done using the raster
(Hijmans 2015), vegan (Oksanen et al. 2017), yaImpute (Crookston
and Finley 2008; Hudak et al. 2008), and base packages in R (R Core
Team 2013). The training and testing data for the maps of species-
level biomass were from one splitting of forest inventory data
(training-to-testing ratio of 7:3).

At the pixel scale, the square of the Pearson correlation (R2),
mean deviation (MD), and root mean square deviation (RMSD)
between observed and predicted species-level biomass were calcu-
lated using the testing data. At the same time, the difference
between observed and imputed species-level biomass distribu-
tions of each species was quantified using empirical cumulative
distribution functions (ECDFs) and the Kolmogorov–Smirnov (KS)
statistic (Lopes et al. 2007; Riemann et al. 2010). The KS statistic
makes no assumptions about the distribution of data, is indepen-
dent of scale changes, and is defined as the maximum distance
between two empirical distribution functions (Riemann et al.
2010). We also calculated the nearest-neighbor distance (Fig. 2c)
between each 250 m pixel and its corresponding reference poly-
gon based on the spatial predictors. Nearest-neighbor distance is
an indicator of model uncertainty, with high values indicating
high uncertainty in the predictions (Crookston and Finley 2008).

We averaged both the observed and imputed species-level bio-
mass of the testing data at the ecoregion scale. In addition to the
accuracy metrics used at the pixel scale, Bray–Curtis community
dissimilarity (BC) (Bray and Curtis 1957) and Spearman rank order
correlation between the field inventory data and the correspond-
ing imputed pixels were calculated as a measure of imputation
quality for each ecoregion. BC values range between 0 and 1, with
0 being the most similar and 1 being the most dissimilar (Bray and
Curtis 1957). Spearman rank order correlation measures how well
the order of species abundance was represented by the imputed
map in each ecoregion. At the regional scale, we also calculated
BC and Spearman rank order correlation. Additionally, the im-
puted and observed mean species-level biomass and its standard
deviation were compared at the regional scale.

Metrics such as R2 and RMSD provide an assessment of the
overall accuracy of the total or single-species biomass maps; how-
ever, additional metrics are required to fully assess the accuracy of
imputation results. For instance, the KS metric provides a robust

Table 3. Description of six distance metrics in this study defined in the yaImpute package of R (Crookston and Finley 2015).

Distance metrics Description

RF Distance in a Random Forest is calculated as one minus the proportion of classification trees where
a target observation is in the same terminal node as a reference observation

Euclidean Euclidean distance is computed in a multivariate predictor variable space normalized by subtracting
the mean and dividing by the standard deviation, for each predictor variable

Mahalanobis Mahalanobis distance is the dimensional components of Euclidean distance weighted by the inverse
of the sample variance–covariance matrix (Mahalanobis 1936)

MSN Most similar neighbor (Moeur and Stage 1995) distance is computed in a projected canonical space
based on the canonical correlation analysis

msnPP Like MSN, except that the canonical correlation is computed using projection pursuit from the ccaPP
R package (Alfons 2013)

GNN Gradient nearest neighbor (Ohmann and Gregory 2002) distance is computed using a projected
ordination of predictors based on canonical correspondence analysis
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assessment of the differences in the distributions of the observed
and imputed species-level biomass, and it is independent of
changes in scale (Lopes et al. 2007). The BC dissimilarity and Spear-
man rank order correlation are effective measurements of forest
composition and dominant species abundance between observed
and imputed data (Duveneck et al. 2015; Ohmann et al. 2011).

3. Results

3.1. Importance of predictor variables
The most important variables selected by the stepwise CCA

method were similar between models using MODIS composites
from different months, although the importance scores of predic-
tor variables varied across months (Fig. 4). The MODIS predictors
tended to have high importance values, although many of the
environmental variables had importance values as high as the
MODIS predictors. For example, mean annual temperature had a
strong positive correlation with the biomass of Mongolian oak

and black birch and had the opposite correlation with pine. Ele-
vation, slope, and the x coordinate also had strong effects on the
biomass of larch, white birch, aspen, and spruce (Fig. 4); however,
the soil-related variables provided almost no important contribu-
tions. Depending on the month used in the GNN model, different
single-month MODIS predictor variables were selected in the kNN
models due to collinearity. Most vegetation indices except GEMI
from June to September showed high positive correlation with
the biomass of white birch and aspen and negative correlation
with the biomass of larch and spruce. The MODIS reflectance
bands b2, b5, b6, and b7 also had high importance scores.

3.2. Performance of different kNN models and model
parameter selection

The performance of the kNN models varied by distance metric,
k value, and which MODIS spectral variables were included (Fig. 5;
Appendix Figs. A1–A3). Models using RF had the best performance
across the three measures of GRMSD, VR, and T (smallest GRMSD

Fig. 4. Biplots for canonical correspondence analysis (CCA) axes 1 and 2 showing selected significant predictor variables (black arrows) for
each month by stepwise CCA method and species centroids (circles). Arrow length and position of the arrowhead indicate the correlation
between the explanatory variable and the CCA axes, and smaller angles between arrows indicate stronger correlations between variables.
Species scores are linear combinations of plot scores. See Tables 1 and 2 for predictor variables. [Colour online.]
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and largest VR and T for the most predictor variables and k value
combinations), but the worst performance (i.e., the greatest devi-
ation from zero) for MD (Appendix Fig. A1). All values of MD
ranged from –1.5 to 1.5 t·ha–1, and the variation of the MD was
small compared with the mean AGB of the forest inventory data
(61.2 t·ha–1) according to different distance metrics. Differences in
GRMSD among the different distance metrics were also small
(<10%) except for msnPP (Fig. 5).

Using multi-month instead of single-month MODIS composites
(June) only slightly improved the accuracy of kNN models, with
the mean of GRMSD reduced by 0.0003 to 0.024 (Fig. 5) and the
mean of T increased by 0.011 to 0.025 (Appendix Fig. A3). Almost all
of the kNN models showed the best performance when k = 15 for
GRMSD and T but the worst performance for VR (the highest T and
the lowest GRMSD and VR). The difference in GRMSD, MD, and T
among the RF models using the single-month MODIS composite
variables for June when k > 6 was essentially negligible (Fig. 5;
Appendix Fig. A3), and VR only had 16.5% difference between k = 1
and k = 6. Therefore, we selected the RF distance metric, single-

month MODIS composite variables for June, and k = 6 as the best
model and used it for imputing species-level biomass.

3.3. Map accuracy assessment

3.3.1. Accuracy of total AGB
From the pixel scale to the ecoregion scale, accuracy improved

substantially, with R2 increasing from 0.60 to 0.91 and RMSD de-
creasing from 12.75 to 2.52 t·ha–1, respectively (Figs. 6a and 6c,
p < 0.05). Although the KS distance was slightly higher at the
ecoregion scale (KS distance = 0.11) than at the pixel scale, a higher
p value (p = 0.95) for KS distance at the ecoregion scale indicated
that the imputed and observed AGB ECDFs had become more
similar with increasing scale (Figs. 6b and 6d). For the regional
scale, the MD between imputed and observed mean AGB was
–0.43 t·ha–1 (Table 4). In addition, pixels with high distance values
either had lower biomass or were located in non-forest areas
(Fig. 2c). The imputed total AGB showed underestimation for the
forests with high biomass and overestimation for the forests with
low biomass (Fig. 6a).

Fig. 5. Multivariate generalized root mean square distance (GRMSD) curves vs. k for different k values and nearest-neighbor imputation models
using different distance metrics based on combinations of environmental variables and seven sets of MODIS composite variables (all months
or a single month of MODIS spectral variables from May to October in the legend). GRMSD is the scaled root mean square distance between
the predicted and observed values for the eight response variables in an orthogonal multivariate space. Mean values are from 20 replicates;
standard errors are very small and are not included for clarity. RF, Random Forest; MSN, most similar neighbor in canonical correlation space;
msnPP, most similar neighbor computed using projection pursuit; GNN, gradient nearest neighbor.
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3.3.2. Accuracy of species-level biomass
Dominant tree species (larch and white birch) had relatively

higher accuracy compared with other species at the pixel scale,
and the results for most species for R2, RMSD, and KS metrics
showed improvement with increasing scales except willow (Figs. 7
and 8). The bias structure for dominant species (larch and white
birch) indicated that the kNN imputation resulted in underestima-
tion at high biomass levels and overestimation at low biomass
levels (Figs. 7 and 8). The KS metrics showed that ECDFs between

the observed and imputed species-level biomass at the pixel scale
for almost all of the species except willow and spruce were signif-
icantly different (p < 0.05; Fig. 8a); however, at the ecoregion scale,
the ECDFs were similar for all species and the KS metrics were not
significant (p > 0.05; Fig. 8b).

The BC dissimilarity was close to 0 (mean value = 0.057, stan-
dard deviation = 0.032) and Spearman rank correlation was close
to 1 (mean value = 0.930, standard deviation = 0.069) for most
ecoregions, indicating that species composition was well repre-

Fig. 6. (a and c) Scatterplots and (b and d) cumulative distribution functions of imputed vs. observed total aboveground biomass (AGB; t·ha–1)
based on the testing data. The top two plots (a and b) are at the pixel scale and the bottom two plots (c and d) are at the ecoregion scale. The
dotted line is the 1:1 line; the dashed line is the geometric mean functional regression line. RMSD (t·ha–1), root-mean square deviation;
KS, Kolmogorov–Smirnov statistic.

Table 4. Imputed and observed mean species-level biomass and their standard deviations, sample size, and mean
deviation (MD) based on testing data at the regional scale.

Mean
biomass (t×ha–1)

Standard
deviation (t×ha–1) Sample size

Species Imputed Observed Imputed Observed Testing Training MD (t×ha–1)

Larch 30.34 29.44 17.36 21.86 1963 4568 0.90
White birch 23.73 23.67 10.84 16.55 2054 4842 0.06
Pine 1.37 1.83 3.24 7.40 253 602 –0.46
Aspen 3.18 3.66 5.21 8.44 635 1492 –0.48
Willow 0.02 0.10 0.31 1.84 10 22 –0.08
Spruce 0.11 0.20 0.80 1.72 44 97 –0.09
Mongolian oak 1.51 1.73 3.74 6.31 297 744 –0.22
Black birch 0.52 0.58 1.66 2.46 177 444 –0.06
Total AGB 60.78 61.21 16.44 20.01 2244 5237 –0.43

Note: AGB, aboveground biomass.
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sented by the imputation map at the ecoregion scale (Fig. 9). The BC
dissimilarity (0.019) and Spearman rank order correlation (0.976) also
showed that our imputed results represent forest composition well
at the regional scale. In addition, BC dissimilarity for each ecoregion
was strongly related to the number of test polygons (Fig. 9).

3.4. Species-level biomass map
The total AGB across all species was mapped by summing the

species-level biomass within each pixel (Fig. 10); the imputed
mean AGB value across the study area was 57.21 t·ha–1. Larch was
the most dominant species with the largest biomass (28.4 t·ha–1),
followed by white birch (21.94 t·ha–1). Aspen was also widely dis-
tributed over the study area, although it had lower biomass density

(2.99 t·ha–1) than larch and white birch. Black birch and Mongolian
oak were imputed mainly in the southern part of the study area,
whereas pine was mainly imputed in the northern part. Willow was
mostly imputed along rivers, which is consistent with the inventory
data. Spruce was sparse and scattered in the study area.

The locations of imputed pixels with low biomass were consis-
tent with the areas influenced by fire and harvesting. For exam-
ple, the area burned by the Black Dragon fire in 1987 in the
northern part of our study area had lower total AGB overall. Other
pixels with low biomass were mainly located in areas of relatively
low elevation where they are most likely to be affected by human
activities such as harvesting (Figs. 1 and 10); conversely areas with
high biomass tended to be in high elevation areas (Fig. 10b).

Fig. 7. Scatterplots of imputed vs. forest inventory aboveground biomass (AGB) about eight species at (a) the pixel scale and (b) the ecoregion
scale based on testing data. The dotted line is the 1:1 line; the dashed line is the geometric mean functional regression line. RMSD, root mean
square deviation.
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4. Discussion
We successfully mapped tree species level biomass in the Great

Xing’an Mountains of northeastern China using MODIS spectral
reflectance, vegetation indices, and additional environmental
variables with a RF-based kNN imputation method. In our study
area, several previous studies had mapped AGB, aboveground for-

est carbon stocks, and timber volume using either Landsat (Li
2010; Qi and Li 2015; Wang et al. 2014) or MODIS imagery (Cartus
et al. 2011; Chi et al. 2015; Su et al. 2016; Zhang et al. 2014); how-
ever, this study is the first to produce a coherent set of species-
level biomass across the Great Xing’an Mountains’ well-inventoried
forests. Although previous studies have imputed forest composition

Fig. 8. Cumulative distribution functions of imputed vs. forest inventory biomass (t·ha–1) for eight species separately at (a) the pixel scale and
(b) the ecoregion scale based on testing data. The metrics of Kolmogorov–Smirnov (KS) statistic are also shown.
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over large areas of the United States using Landsat data and GNN
methods (Ohmann and Gregory 2002) or MODIS (Duveneck et al.
2015; Wilson et al. 2012), questions about distance metrics, multi-
temporal spectral variables, and k values were explored in our study.

4.1. Selection of distance metrics and k value
Selecting the type of kNN distance metric and which predictor

variables to use for imputation can be challenging because of the
availability of a large number of distance metrics and a nearly
endless number of potential predictors. Our study demonstrated
that the RF distance metric had the highest accuracy when imput-
ing species-level biomass using MODIS spectral variables. This
finding is similar to the results that Hudak et al. (2008) reported
using lidar metrics. The advantage of using the RF distance metric
lies in its efficiency for processing high-dimensional data, flexibil-
ity to handle highly correlated predictors, and high levels of pre-
diction accuracy (Prasad et al. 2006), which are largely because
RF-based predictions are minimally affected by the inclusion of
unimportant variables (Hastie et al. 2009). Although other meth-
ods such as stepwise CCA could be used to select the important
variables from large sets of predictor variables, we found that
using stepwise CCA as done in Ohmann and Gregory (2002) re-
quired fitting more models and thus required more time than the
RF model when the number of predictor variables was large. This
was mainly because RF variable selection is more automated than
stepwise CCA; however, the potential benefit of using stepwise
CCA to select the predictor variables might be that collinear pre-
dictor variables are removed and the relationships between the
remaining predictor variables and the response variables can be
more readily explained. After the RF distance metric, MSN-based
imputation had the second highest accuracy and executed more
efficiently than the RF-based kNN model. Given this, it might be
worth considering use of the MSN distance metric for large areas
instead of the RF distance metric to reduce computation times.

The similar trend with increasing k in our study for GRMSD, T,
and MD was observed in contrast to the findings of previous stud-
ies (Beaudoin et al. 2014; McRoberts 2012; Muinonen et al. 2001;
Wilson et al. 2012). Selecting a k value is a trade-off between the
covariance structure and the imputation accuracy (Muinonen
et al. 2001; McRoberts 2012). By selecting k = 6 in our study, cova-
riance structure was kept as stable as possible on the basis of
assuring the imputation accuracy.

4.2. Performance of single- and multi-month MODIS
composite predictors

Previous studies reported that multi-temporal spectral informa-
tion improved the prediction accuracy of AGB by reducing limita-
tions related to the saturation of spectral reflectance with forest
biomass — at some point, spectral sensors are not responsive to
increases in biomass beyond a certain threshold (Gómez et al.
2014; Powell et al. 2010; Zhu and Liu 2015). However, in our study,
no appreciable improvement in performance for species-level

biomass imputation was observed using multi-month MODIS
composite variables compared with using single-month MODIS
composite variables (Fig. 5). There could be several reasons for
this. First, the biomass of species composition was considered in
the species-level biomass accuracy assessment compared with the
total AGB accuracy assessment. Multi-month MODIS composites
could improve AGB estimation by providing additional informa-
tion for the forests that have similar MODIS reflectance values at
the peak of the growing season and different reflectance values at
the start of the growing season. Such information also could di-
vide one forest composition type into many others. In addition,
MODIS composite variables for specific months may contain im-
portant information for distinguishing the tree species in our
study area. For example, MODIS composite variables from June
showed better performance than other monthly spectral variables
for all of the distance metrics (Fig. 5). This may be because most
species in the Great Xing’an Mountains leaf out in June (Yu and
Zhuang 2006), and species-related differences in June spectral re-
flectance are good indicators of species-level differences in AGB.
Finally, information derived from multi-month MODIS composite
images could describe temporal dependence and have the ability
to improve species-level biomass imputation. For example, Wilson
et al. (2012) imputed tree species across the eastern half of the con-
tiguous United States utilizing parameters from a harmonic regres-
sion fit to MODIS monthly composites.

Generally, lidar is currently considered to generate the most
accurate data for estimation of forest structure (Pflugmacher et al.
2012). However, GRMSDs obtained in our study are comparable
with the values obtained with lidar (Hudak et al. 2008). The fol-
lowing two reasons may reduce the accuracy gap between lidar
and MODIS data in estimating forest species-level biomass. First,
lidar metrics have an obvious advantage for estimating forest
aboveground biomass compared with multispectral satellite im-
ages but are less effective for mapping tree species composition
(Zald et al. 2014). Secondly, mid-seral, secondary forests are the
main components of our study area, and such forests are more
sensitive to the optical spectral reflectance because their spectral
reflectance often cannot reach the saturation point (Lu 2006). This
may indicate that it is more efficient to use MODIS or Landsat data
for imputing species-level attributes of mid-seral, secondary for-
ests over large areas rather than lidar data.

In Chinese boreal forests, the large area and constantly chang-
ing forest structure and biomass due to high-frequency distur-
bances presented a unique challenge for choosing predictor
variables of kNN imputation, which need high temporal resolu-
tion and wide availability (Wu et al. 2013; Xu 1998). MODIS data,
with higher temporal resolution and broader spatial coverage
than Landsat data, are suitable for applying kNN to deriving forest
attributes (Wilson et al. 2012). Our imputed results showed that
using single-month MODIS data from June can produce accuracy
comparable with using multi-month MODIS data for species-level

Fig. 9. The number of testing polygons (n) vs. Bray–Curtis dissimilarity (BC) and Spearman rank order correlation coefficient (COR) in each
ecoregion.
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Fig. 10. (a) Maps of total aboveground biomass (AGB) and species-level biomass; (b) the mean values and standard errors of the imputed total
AGB at different elevation gradients. [Colour online.]
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biomass imputation. Our approach also captures forest distur-
bance and is an efficient way to impute forest species-level bio-
mass over broad spatial extents.

4.3. Distribution of species-level biomass with
environmental gradient

The environmental variables captured resource gradients that
might not be well represented in the remote sensing data and
were as important as the MODIS-derived predictor variables in our
species-level biomass imputation (Fig. 4). The spatial pattern of
species-level biomass in our imputed results was partially consis-
tent with tree species’ environmental niches. For example, black
birch and Mongolian oak are limited by temperature and are
abundant in the south, while pine is adapted to the cold, dry
environments and is abundant in the north. The biomasses of
white birch and aspen showed some negative correlation with the
biomass of larch (Fig. 4). This may be because white birch and
aspen are early successional species and often are the first to
recolonize disturbed larch forests but are gradually replaced by
larch due to succession.

The spatial pattern of species-level biomass in our imputed re-
sults also reflected the influence from forest harvest and distur-
bance. Overall, the total woody AGB of virgin larch forests should
initially increase and then decrease along the elevation gradient
according to the description by Xu (1998) because of permafrost
due to the low soil temperatures and poor drainage in the areas
with low elevation and strong wind and ultraviolet radiation on
mountaintops; however, a slightly increasing trend in AGB along
the elevation gradient was observed in our results, similar to the
results reported in Wang et al. (2014). This may be because mid-
seral, secondary forests have become the main components of the
forest landscape except in high-elevation areas in the natural re-
serves due to long-term harvesting activities (Luo et al. 2014). In
addition, Feng (1999) reported that the mean biomass of mature
virgin larch forests in our study area should be nearly 161 t·ha–1,
whereas the mean AGB of our imputed results was only 57.21 t·ha–1,
similar to the results reported in Wang et al. (2014). This might
indicate that forests in our study area have great potential for
additional growth.

4.4. Imputation accuracy and limitations
Our imputation results have comparable accuracy with other

mapping projects that use traditional field plots and satellite im-
agery. For example, our imputed AGB, estimated by merging
species-level biomass in each pixel, was equal to or more accurate
(R2 = 0.60) than AGB predictions for northeastern China and Canada
(R2 = 0.16–0.62) that used forest inventory data and MODIS or
Landsat imagery (Beaudoin et al. 2014; Chi et al. 2015; Wang et al.
2014; Zhang et al. 2014). Likewise, our estimates of species-level
biomass and composition have accuracy comparable with recent
forest composition imputation mapping in New England at the
ecoregion scale (Duveneck et al. 2015). Although these compari-
sons with other studies are partially confounded by different sta-
tistical methods, inventory protocols, and forest types, they
indicate that our imputation results have a relatively reliable ac-
curacy.

At the pixel scale, the total AGB (Figs. 6a and 6b) and species-
level biomass of larch and white birch (Fig. 7a) had relatively high
accuracy compared with other species; however, the bias struc-
ture was obvious for the species-level biomass imputation, with
underestimation in areas with high biomass and overestimation
in areas with lower biomass potentially caused by MODIS spectral
saturation in forests with high biomass. A large number of pixels
also were imputed with unrealistic species biomass (Fig. 7a, a
large number of zero values in the X and Y axes) at the pixel level.
This might indicate a limitation of multispectral data for distin-
guishing tree species (Martin et al. 1998). Hyperspectral data may
help to improve the imputation results, but these types of data are

difficult to collect over large areas. Additionally, imputation accu-
racy could have been influenced by the coarse spatial resolution of
our data — increasing the possibility for mismatch between the
pixels and forest inventory data, especially along polygon bound-
aries.

At the ecoregion scale, the accuracy metrics all showed that our
results had reasonable accuracy (Figs. 6–9). Our imputed results
are relatively accurate and can be used for many analyses, e.g.,
assessing the effects of environment variables on forest composi-
tion (Liang et al. 2014), monitoring carbon stocks (He 2008;
Scheller et al. 2007), and quantifying the impacts of forest man-
agement (Wu et al. 2013). In some ecoregions, relatively large
dissimilarities between observed and imputed forest composition
were found, especially where the density of inventory data was
low (Fig. 9). It is possible that the actual species distribution in
these ecoregions was not well represented by the inventory data.
Our imputed results were more accurate at the regional scale than
at the pixel and ecoregion scales. The increasing accuracy with
increasing scale is consistent with results reported by others (e.g.,
Wilson et al. 2012). This may be because ecoregions in our study
captured species-level biomass gradients associated with environ-
mental conditions better than individual pixels, although the ef-
fects of spatial aggregation within each ecoregion also could be
important.

The accuracy assessment of our imputed results at different
scales can provide useful information for different applications.
For example, forest landscape change models need species-level
attributes at the pixel scale to initialize forest conditions (Duveneck
et al. 2015), whereas ecosystem process research may require forest
species-level attributes at the ecoregion or regional scale (Canadell
and Raupach 2008; Führer 2000). The lower accuracy of some rare
species (e.g., willow and spruce) at different scales might be caused
by their very limited distributions. First, a limited number of sam-
ples included spruce and willow in our inventory data (Table 4), and
it was difficult to calibrate the models using these samples. Second, it
was difficult to capture uncommon species using the predictor vari-
ables with 250 m resolution, and predictor variables with finer spa-
tial resolution may be needed to improve the imputed accuracy for
such species.

5. Conclusions
In summary, the nonparametric RF-based kNN method integrat-

ing multispectral variables derived from June MODIS data and
environmental variables with forest inventory data was used to
map the species-level biomass across the forests of the Great
Xing’an Mountains of northeastern China. The RF distance metric
was slightly superior to others assessed in this study for imputing
forest species-level biomass over large areas. Using multi-month
MODIS predictor variables did not improve species-level biomass
imputation compared with using single-month MODIS data for
June. Using MODIS data to impute species-level attributes can
produce accuracy comparable with using lidar data for young and
middle-aged boreal forests. Imputed biomass for the dominant
species (larch and white birch) had relatively good accuracy at the
pixel, ecoregion, and regional scales, although other associated
species had poorer accuracy at the pixel scale. The distribution of
our imputed species-level biomass also captured the effects of
disturbances such as fire and harvest, and the method could be
used for broad-scale monitoring of changes in biomass over time.
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Fig. A1. Mean deviation (MD) vs. k for different k values and nearest-neighbor imputation models using different distance metrics based on
combinations of environmental variables and seven sets of MODIS summary variables (all months or a single month of MODIS spectral
variables from May to October in the legend). MD was calculated as the difference between the mean imputed and mean observed total
aboveground biomass. Mean values are from 20 replicates; standard errors are very small and are not included for clarity. RF, Random Forest;
MSN, most similar neighbor in canonical correlation space; msnPP, most similar neighbor computed using projection pursuit; GNN, gradient
nearest neighbor.
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Fig. A2. Variance ratio (VR) vs. k for different k values and nearest-neighbor imputation models using different distance metrics based on
combinations of environmental variables and seven sets of MODIS summary variables (all months or a single month of MODIS spectral
variables from May to October in the legend). Mean values are from 20 replicates; standard errors are very small and are not included for
clarity. RF, Random Forest; MSN, most similar neighbor in canonical correlation space; msnPP, most similar neighbor computed using
projection pursuit; GNN, gradient nearest neighbor.
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Fig. A3. Multivariate goodness of fit criterion (T) curves vs. k for different k values and nearest-neighbor imputation models using different
distance metrics based on combinations of environmental variables and seven sets of MODIS summary variables (all months or a single
month of MODIS spectral variables from May to October in the legend). Mean values are from 20 replicates; standard errors are very small and
are not included for clarity. RF, Random Forest; MSN, most similar neighbor in canonical correlation space; msnPP, most similar neighbor
computed using projection pursuit; GNN, gradient nearest neighbor.
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