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Abstract. Fire propagation is inevitably affected by fuel-model parameters during wildfire simulations and the
uncertainty of the fuel-model parameters makes forecasting accurate fire behaviour very difficult. In this study, three
different methods (Morris screening, first-order analysis and the Monte Carlo method) were used to analyse the

uncertainty of fuel-model parameters with FARSITE model. The results of the uncertainty analysis showed that only a
few fuel-model parameters markedly influenced the uncertainty of the model outputs, and many of the fuel-model
parameters had little or no effect. The fire-spread rate is the driving force behind the uncertainty of other fire behaviours.

Thus, the highly uncertain fuel-model parameters associated with spread rate should be used cautiously in wildfire
simulations. Monte Carlo results indicated that the relationship between model input and output was non-linear and
neglecting fuel-model parameter uncertainty of the model would magnify fire behaviours. Additionally, fuel-model

parameters have high input uncertainty. Therefore, fuel-model parameters must be calibrated against actual fires. The
highly uncertain fuel-model parameters with high spatial-temporal variability consisted of fuel-bed depth, live-shrub
loading and 1-h time-lag loading are preferentially chosen as parameters to calibrate several wildfires.
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Introduction

Great uncertainty surrounds fire propagation because many
factors (e.g. terrain, weather, and fuel cover) affect this process
(Carlson and Burgan 2003; Pierce et al. 2009; Cruz et al. 2013;

Wu et al. 2013; Zhang et al. 2017; Gharun et al. 2018). The
uncertainty makes obtaining reasonable predictions of wildfire
events very complex. Simulating wildfires using fire-behaviour
simulation models is an effective method to predict fire beha-

viours. Thus, the uncertainty of fire-behaviour simulation
models, particularly that of spatially explicit models (e.g.
FARSITE model), has become a hot area of research in wildfire

simulation (Finney 1998; Cruz et al. 2004; Mutlu et al. 2008; de
Rigo et al. 2013; Benali et al. 2016; Benali et al. 2017).

The sources of uncertainty must be identified before analys-

ing their effects on model predictions. Parameter uncertainty,
input data uncertainty and structural uncertainty are three parts
of uncertainty in model outputs. Some studies have been

conducted on structural uncertainty and input data (e.g. weather
conditions, fuel spatial resolution, topography and wind spread)
during fire simulations (Finney 1998; Bossert et al. 2000;
Cruz et al. 2004; Weise et al. 2007; Cruz and Fernandes 2008;

Mutlu et al. 2008). For example,Mutlu et al. (2008) analysed the

sensitivity of a fire-behaviour simulation using higher spatial
resolution surface-fuel maps obtained from LiDAR, compared
with that calculated with QuickBird-derived fuel maps. The

results showed that the LIDAR-derived variables providedmore
detailed information about fire characteristics. However, uncer-
tainty analyses of fuel-model parameters are rarely reported.
A fuel model is defined as a stylised set of fuel-bed character-

istics used as input for a variety of wildfire modelling applica-
tions (Anderson 1982). Studies have shown that a fuel model
with different parameters usually has a different effect on fire

behaviour (Arca et al. 2007a; Iliopoulos et al. 2013; Cai et al.
2014). Thus, understanding the uncertainty of fuel-model para-
meters is gaining increasing attention.

Numerous methods can be used to assess the uncertainty
of parameters, such as sensitivity analysis, Bayesian analysis,
maximum likelihood, the Monte Carlo method, first-order

analysis and the neural network method (Kitanidis 1986;
Morris 1991; Kuczera and Parent 1998; Freissinet et al. 1999;
Richardson and Hollinger 2005; Wang et al. 2006). These
methods identify parameters that significantly affect model
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outputs. Among them, a sensitivity analysis (Morris 1991;
Wagner et al. 1996; Arabi et al. 2007; Sun et al. 2012; Qin
et al. 2013), first-order analysis (Freissinet et al. 1999; Zhang

2001; Yegnan et al. 2002) and theMonte Carlomethod (Kuczera
and Parent 1998; Greenland 2001; Jampani et al. 2008) are
widely used to analyse the uncertainty of parameters worldwide.

The sensitivity analysis method (e.g. Morris screening analysis)
is convenient to determine the most sensitive model-efficiency
parameters (Morris 1991; van Griensven et al. 2006). However,

parameters with low uncertainty and high sensitivity are likely to
have smaller effects on model output than parameters that have
high uncertainty and low sensitivity (Melching and Bauwens
2001). Thus, further uncertainty analyses must be carried out

after a parameter sensitivity analysis. First-order analysis is an
appropriate method to determine uncertainty of parameters and
is widely used to identify the critical origins of uncertainty

(Orban et al. 1992; Melching and Yoon 1996; Freissinet et al.
1999; Shen et al. 2008). The Monte Carlo method is also an
effective method to determine the complete range of parameter

uncertainties in complex spatial models, and it uses random
variables as the input data (Kuczera and Parent 1998; Greenland
2001; Jampani et al. 2008). The use of random variables can

eliminate the uncertainty of model input.
The forests of the Great Xing’an Mountains provide a large

number of wood and timber products in China (Zhou 1991).
High intensity fires occur in this area mainly because of fuel

accumulation (Liu et al. 2012). Thus, it is important to study fuel
status in this area to predict fire behaviour and reduce losses
resulting from wildfires. Many studies have been conducted on

fuels and their behaviour in fires that occur in boreal forests
(Shan 2003; Du 2004; Chen et al. 2008; Hu et al. 2012), and
some studies have developed forest-fuel models; however, the

fuel models have not been tested against actual fire behaviours
(Shan 2003; Du 2004). Cai et al. (2014) attempted to establish
standard fuel models in this area by adjusting highly sensitive
fuel-model parameters against some actual fires, but the results

indicated that low accuracy of fire prediction during verifica-
tion. This was very likely because the calibrated fuel models did
not fully reflect the fuel conditions. Therefore, it has become

necessary to further calibrate the highly uncertain fuel model
parameters against several actual fires.

This present study focused on the Great Xing’an Mountains

in north-eastern China and used the FARSITE model in con-
junction with a Morris screening analysis, the Monte Carlo
method and a first-order analysis to research the uncertain fuel-

model parameters that significantly affect fire prediction. The
overall objective of this study was to identify the relative
importance of uncertainty of each fuel-model parameter and
to determine the regulatory parameters for calibration to provide

suggestions for wildfire modelling and fuel management in the
Great Xing’an Mountains.

Materials and methods

Study area

The study area was located in north-east China (1218120–
1278000E, 508100–538330N) and covered 8.46� 106 ha (Fig. 1).
This area has a long and severe continental monsoon climate.
Mean annual precipitation ranges from 240 to 442 mm in a

northwestern to southeastern direction, and mean annual tem-
perature varies from�6 to 1 8C in a northwestern to southeastern

direction. The vegetation in this area is cool, temperate, conif-
erous forests (Zhou 1991). Overstorey species mainly include
willow (Chosenia arbutifolia), birch (Betula platyphylla), larch

(Larix gmelini), spruce (Picea koraiensis), pine (Pinus sylvestris
var. mongolica) and a shrub species (Pinus pumila).

Fire simulations using the FARSITE model

FARSITE is commonly used to simulate fire propagation and
fuel treatments (Finney et al. 1997; Fujioka 2002; Stratton 2004;
Ryu et al. 2007) and was developed by the United States
Department of Agriculture (Finney 1998). FARSITE is a

Rothermel fire-spread model (Rothermel 1972). Several geo-
graphical information system (GIS)-based layers are required to
run the model, including the fuel model, fuel distribution, ele-

vation, aspect, slope and three crown-fuel layers (i.e. crown bulk
density, stand height and crown base height). Fuel-model
parameters have a major influence on fire simulations, as

reported in many previous studies (Arca et al. 2007a; Iliopoulos
et al. 2013; Cai et al. 2014). The fuel-model parameters consist
of 1-h time-lag loading (diameter, 0.64 cm), 10-h time-lag
loading (0.64 cm # diameter, 2.54 cm), 100-h time-lag load-

ing (2.54 cm # diameter, 7.62 cm), live-shrub loading, 1-h
time-lag surface area-to-volume (SAV), dead-fuel moisture of
extinction, dead heat content, live-shrub SAV, fuel-bed depth

and live heat content. In addition, meteorological-input data
include wind speed and direction, air temperature, rain intensity,
relative humidity, and cloud cover.

The surface fire spread rate (R) is expressed as:

R ¼ IRxð1þ Fw þ FsÞ
rbeQig

ð1Þ

where R is the steady-state spread rate of the heading fire
(m min�1), IR is reaction intensity (kJ min�1 m�2), x denotes

the propagating flux ratio, rb is oven-dried bulk density
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Fig. 1. The geographic location of the study area and the case study that

was used to analyse fuelmodel parameter uncertainty in this study; fire patch

map was obtained through a combination of bandMIR, bandNIR and bandRED
of a LANDSAT ETMþ image in May 2000.
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(kg m�3), Fw is the wind coefficient (dimensionless), Fs is a
slope factor (dimensionless), e represents effective heating

number (dimensionless), and Qig is the heat of preignition of
the fuel (kJ kg�1).

Fireline intensity (Ib) describes the rate of energy release per

unit length of the fire front (kW m�1):

Ib ¼ IR

60

12:6R

s
ð2Þ

where s is the characteristic surface area-to-volume ratio of the

fuel bed (m�1).
Heat per unit area (HA) denotes the heat released from a

square foot of fuel when the flaming zone is in that area

(Andrews 1986). It is calculated as:

HA ¼ 60Ib

R
ð3Þ

Flame length (FL) is directly associated with fireline inten-
sity. Flame length is a function of fireline intensity (m) (Byram
1959), which is calculated as (Andrews 1986):

FL ¼ 0:45ðIbÞ0:46 ð4Þ

In the present study, the fire simulation was conducted on a
historical fire caused by humans, which occurred in the Great
Xing’an Mountains during May 2000 (Fig. 1). Parameterisation

of the FARSITE model was based on topography data, meteo-
rological data and a fuel-model map. The fire patch contained
three types of fuel models: FM-1 (shrub fuel model, 8.8%),

FM-2 (broadleaf fuel model, 40.5%) and FM-3 (coniferous fuel
model, 50.7%). Further details about this fire simulation are
available in our previous study (Cai et al. 2014).

The temporal and spatial resolution of the simulation was set

as follows: time step was 30min, perimeter resolution was 30m,
and distance resolution was 20 m. A conditioning period of 24 h
was used to adjust the fuel moisture before the fire simulation to

reduce the effect of the initial fuel moisture on the fire simula-
tion. Fire-suppression activities were not considered during fire-
simulation processes. Roads and rivers were used as barriers to

fire spread (Fig. 1). The established FARSITE model was then
used for the sensitivity and uncertainty analysis of fuel model
parameters.

Methods for the uncertainty analysis of fuel model
parameter

Morris screening method

This study used the Morris screening method (Morris 1991) to

analyse sensitivity of the fuel-model parameter. The Morris
screeningmethod proposes a random one factor at a time design,
in which only a parameter xi is changed between two successive

runs of the model (Francos et al. 2003). The change in the model
output y(x)¼ y(x1, x2, x3y xn) can be directly ascribed to the
modification using the elementary effect ei, which is defined by

the following equation:

ei ¼ yiþ1 � yi

Dxi
ð5Þ

where yiþ1 is the new outcome, yi is the previous outcome, and
Dxi is the step interval in parameter x.

In this study, the revised Morris screening method was

employed to assess the effect of the change of the factor:

S ¼
Xn¼1

i¼0

ðYiþ1 � YiÞ=Y0
ðPiþ1 � PiÞ=100=ðn� 1Þ ð6Þ

where S represents the index of sensitivity; Yi is themodel output
for time i; Yiþ1 is the model output for time (iþ 1); Y0 is the
initial value of the model output; Pi is the percentage change of
the parameter for time i; Piþ1 is the percentage change of the

parameter for time (iþ 1); and n is the number of predictions.
The fuel-model parameters for calculating fire behaviours

using the FARSITEmodel are listed in Table 1 (Shan 2003). All

parameters were kept constant, except one that was changed
with a fixed step length (�20, �15, �10, �5, 5, 10, 15 and
20%). The fuel-model parameters were varied as inputs to the

FARSITE model. The model output variables consisted of
spread rate (m min�1), heat per unit area (kJ m�2), fireline
intensity (kW m�1) and flame length (m). We used the mean
values of the model outputs to analyse the sensitivity and

uncertainty of fuel model parameters. The duration of each
model was 24 h (0800 to 0800 hours the next day).

In the present study, the fuel-model parameters that had a

greater effect on fire behaviours were identified by the Morris
screening method. This process screens the more sensitive fuel-
model parameters and selected the parameters that were used for

Table 1. Parameters of fuel models for the historical human-caused fire, May 2000

Fuel model (FM) is a static fuel model in this study and live grass is included in the dead grass content. SAV, surface area-to-volume

Fuel model parameters FM-1 FM-2 FM-3

1-h fuel loading (Mgha�1) v. SAV (cm�1) 2.87, 83.7 4.16, 97.3 5.46, 98.6

10-h fuel loading (Mgha�1) v. SAV (cm�1) 3.57, 3.58 6.87, 3.58 6.35, 3.58

100-h fuel loading (Mgha�1) v. SAV (cm�1) – 1.24, 0.98 2.04, 0.98

Live shrub (Mgha�1) v. SAV (cm�1) 2.30, 21.90 0.66, 23.8 1.70, 32.02

Fuel bed depth (cm) 36.45 18.39 29.46

Moisture of extinction (%) 52.20 40.19 36.62

Dead v. live heat content (kJ kg�1) 18 942, 20 477 19 847, 20 242 20 820, 21 199
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further first-order and Monte Carlo analyses. These fuel-model
parameters were assumed to be independent of each other.

First-order analysis method

First-order analysis is a widely used method for uncertainty
estimates and is based on the Taylor series expansion (Cornell
1972). Unlike traditional sensitivity analysis (e.g. the Morris

screening method), the first-order method not only considers
parameter sensitivity but also considers the uncertainty of the
parameter during this procedure. The components of total

uncertainty in the model outcome that are induced by each
random input variable are provided. Each input variable is
assumed to be independent and the model is linear without
considering the higher-order terms of the Taylor equation.

Therefore, the function y¼ f (x) is expressed as:

y ¼ f ðX Þ ffi f ðX Þ þ
X
i

@f

@pi
ðXi � XiÞ ð7Þ

where y is output during the fire simulations. The means ‘equal
in the first order sense’ and Xi denotes the fuel model parameter
mean.

Assuming small parameter modifications around the average
value, the first-order estimated value and variance are as
follows:

E½ f ðX Þ� ¼ f ðX Þ ð8Þ

var½ f ðX Þ� ffi
X
i

X
j

@f

@Xi

@f

@Xj

covðXi;XjÞ ð9Þ

where cov(Xi,Xj)¼ rij var(Xi)
1/2 var(Xj)

1/2. The correlations are
disregarded if the parameters act independently. Thus, rij¼ 1 for

i¼ j and rij¼ 0. Otherwise, Eqn 9 leads to:

var½ f ðX Þ� ¼
X
i

@f

@pi

� �2
varðXiÞ ð10Þ

In this study, the effects of the fuel-model parameters on the
FARSITE model output variables were calculated with the

following equation:

SC ¼ @f

@Xi

� �
varðXiÞ ð11Þ

Therefore, the contribution (%) to the total output variance
from each uncertain fuel-model parameter was determined

using Eqn 12.

Contribution ¼ Contribution of a fuelmodel parameter

Total Variance

¼ SCi

SCTotal

� 100%
ð12Þ

If the rate of contribution of a fuel-model parameter to the
total variance was ,5%, the fuel-model parameter was not a

source of uncertainty. The coefficient of variation (CV)was also

calculated and used as a measure of dispersion degree of the
outputs.

Monte Carlo method

The Monte Carlo method is defined as any technique making

use of random numbers to solve a problem as a conventional
approach to address uncertainty assessment (James 1980;
Rodriguez and Dabdub 2003). This method provides approxi-

mate solutions to different mathematical problems by conducting
statistical sampling tests. There are three steps in theMonte Carlo
simulation procedure: (i) randomise samples from the possible
range of input variables according to the probability distribution

of the input variable; (ii) input the sampling variable values into
the model; and (iii) run the model and assess the model results. A
fire-propagation time span of 5 h was simulated.

In the present study, the fuel-model parameters were
assumed to be independent of each other because of the
difficulty of defining the correlation structure among them.

Fuel-model parameters are supposed to be uniformly distrib-
uted, because their distributions are lacking. A Monte Carlo
analysis using a large number of random samples yields reason-

able estimates, but is computationally expensive (Doucet et al.
2001). In the present study, a constrainedMonte Carlo sampling
scheme, called Latin hypercube sampling (LHS), was used to
sample the parameters and improve the calculation efficiency of

the Monte Carlo simulations (Rodriguez and Dabdub 2003).
LHS selects k different values from each parameter. We divided
each input variable into k non-overlapping intervals based on

equal probability, and a value from each interval was chosen
randomly. The appropriate size of the Latin hypercube sampling
sample (m) was determined by the number of input variables, n

(k. 4n C 3). Thus, for the five screened sensitive fuel-model
parameters for each fire behaviour, we divided the range of each
fuel-model parameter into 10 sub-intervals of equal probability
and the median of each sub-interval was chosen as the sampling

value. The combinations of randomly sampled values were then
input into the FARSITE model and a simulation was run. In this
study, simulation times were determined by two steps: (i) we

carried out the simulation and then analysed the model outputs
(i.e. mean and standard variance) (Haan et al. 1998); and (ii) if
the number of predictions was insufficient to attain accurate

convergence, we iteratively expanded the simulation to a larger
scale until satisfactory results were obtained.

Table 2 provides the fuelmodel parameters used in theMonte

Carlo simulation. The definition and ranges of the fuel model
parameters are also shown in Table 2.

Results

Morris screening

The five most sensitive fuel-model parameters for each fire
behaviour variable are shown in Table 3. Based on the results,

the sensitivity levels of the fuel-model parameters differed
among the four fire behaviours, and the five sensitive fuel-model
parameters for each fire-behaviour variable were not the same.

However, both dead heat content and 1-h time-lag loading had
fairly higher sensitivities for all four variables. The five most
sensitive fuel-model parameters for themodel outputs were then
used for further uncertainty analyses.
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First-order analysis

The uncertainty of the fivemost sensitive fuel-model parameters
for each output variable was subsequently analysed using first-

order analysis. Table 4 shows that only a few number of fuel-
model parameters clearly affected the uncertainty of the model
outputs. The 1-h time-lag loading, live-shrub loading and fuel-

bed depth were the primary contributors to uncertainty for rate
of spread. The most uncertain factors for heat per unit area were
1-h time-lag loading, live-shrub loading, live-shrub SAV, fuel-
bed depth and 1-h time-lag SAV. The fuel-model parameters,

fuel-bed depth and 1-h time-lag loading were the most uncertain
factors influencing fire intensity. Finally, the uncertainty factor

for flame length was 1-h time-lag loading. 1-h time-lag loading
had a substantial effect on all model output variables. The total
contributions from these fuel-model parameters to the uncer-

tainty of spread rate, heat per unit area, fireline intensity and
flame length were 95.63, 99.53, 98.43 and 95.13% respectively.

The average value, CV values and variance of the model
output variables are listed in Table 5. The dispersion degree of

the predicted fire behaviour decreased with a decrease in the CV

Table 3. Fuel model parameters sensitivity analysis with Morris qualitative screening method

SAV, surface area-to-volume

Rate of spread Heat per unit area Fireline intensity Flame length Rank

Fuel model parameter Sensitivity Fuel model parameter Sensitivity Fuel model parameter Sensitivity Fuel model parameter Sensitivity

Fuel-bed depth 0.901 1-h SAV �0.988 1-h time-lag loading 1.191 1-h time-lag loading 0.545 1

1-h SAV 0.723 Dead heat content 0.616 Dead heat content 1.187 Dead heat content 0.541 2

1-h time-lag loading 0.627 1-h time-lag loading 0.56 Fuel-bed depth 0.975 Fuel-bed depth 0.448 3

Dead heat content 0.560 Live heat content 0.392 Live heat content 0.72 Live heat content 0.331 4

Live-shrub SAV �0.406 Live-shrub loading 0.352 Live-shrub SAV �0.462 Live-shrub SAV �0.207 5

Table 4. Statistics of key parameters by first-order analysis method

s.d., standard deviation; K, sensitivity coefficient¼ dy C dx; variance¼SD2�K2; CTU, contribution to overall uncertainty; SAV, surface area-to-volume

Fire behaviour Parameter s.d. K Variance CTU (%)

Rate of spread 1-h time-lag loading 5.57 0.51 8.0723531 64.90%

Fuel-bed depth 89.11 0.016 2.0329168 16.35%

Live-shrub loading 5.57 �0.24 1.7889597 14.38%

Total 95.63%

Heat per unit area 1-h time-lag loading 5.57 1914.7 113778779 67.10%

Live-shrub loading 5.57 811.7 20462993 12.07%

Live-shrub SAV 35.28 �112.47 15745133 9.29%

1-h SAV 34.38 �92.5 10113495 5.96%

Fuel-bed depth 89.11 �33.03 8663567.9 5.11%

Total 99.53%

Fireline intensity 1-h time-lag loading 5.57 237.39 1748979.2 92.40%

Fuel-bed depth 89.11 3.79 114066.48 6.03%

Total 98.43%

Flame length 1-h time-lag loading 5.57 0.349 3.7801641 95.13%

Total 95.13%

Table 2. Fuel model parameters and their ranges used in the Monte Carlo simulation

SAV, surface area-to-volume

Parameters Definition Minimum Maximum

1-h time-lag loading (Mgha�1) Oven-dry weight per unit square of dead fuel (diameter ,0.64 cm) 0 20

Live-shrub loading (Mgha�1) Oven-dry weight per unit square of live shrub 0 20

1-h time-lag SAV (cm�1) Surface area-to-volume of 1-h time-lag 1.5 120

Live-shrub SAV (cm�1) Surface area-to-volume of live shrub 1.5 120

Dead heat content (kJ kg�1) Energy release per unit square of dead fuel load 18 000 22 000

Live heat content (kJ kg�1) Energy release per unit square of live fuel load 18 000 22 000

Fuel-bed depth (m) Average depth of fuel bed 0 3

Uncertainty analyses of fuel model parameter Int. J. Wildland Fire 209



value; namely, the uncertainty of the predicted fire behaviours
decreased with a decrease in the CV. Among the output vari-
ables, fireline intensity had largest CV (87.29%) and heat per

unit area had the smallest CV (35.03%), indicating that the
uncertainty of fireline intensity was the greatest and the uncer-
tainty of heat per unit area was the least.

Monte Carlo simulation

A total of 90Monte Carlo simulationswere run in this study. The
mean, standard variance and CV among the three groups with

different simulation times were similar (Table 6), indicating that
90 simulations were sufficient to acquire dependable results for
the Monte Carlo uncertainty estimate.

Among the output variables, fireline intensity had the highest

CV (95.2%), whereas heat per unit area had the lowest CV
(47.5%) (Table 6), indicating that the uncertainty of heat per unit
area was the smallest, and the uncertainty of fireline intensity

was the largest. The model outputs calculated using the average
input fuel-model parameters were all larger than those from the

Monte Carlo simulations that considered the uncertainty of fuel
model parameters (Table 6).

Table 7 shows the CV values and contributions of the fuel-

model parameters. Fuel-bed depth, 1-h time-lag loading, live-
shrub loading, 1-h time-lag SAV and live-shrub SAV were the
main sources of uncertainty for spread rate and heat per unit

area, whereas fuel-bed depth, 1-h time-lag loading, 1-h time-lag
SAV and live-shrub SAV were the primary sources of uncer-
tainty for fireline intensity. Finally, 1-h time-lag loading, fuel-

bed depth and live-shrub SAV were the primary sources of
flame-length uncertainty. The respective contributions of these
main fuel-model parameters to the uncertainty of spread rate,
heat per unit area, flame length and fireline intensity were 97.45,

96.41, 89.52 and 93.98% respectively.

Discussion

Some studies have analysed the effect of different fire-fuel
models on behaviour simulations (Arca et al. 2007a; Iliopoulos

et al. 2013). For example, Salazar (1985) analysed the sensi-
tivity of fire-behaviour simulations in 13 fuel models under
different weather conditions so that the firemanager could select

proper combinations of fuel models to describe different fuel
situations. As far as we know, the effects of different fuelmodels
on behaviour simulations were tested by Michele Salis from
University of Sassari of Italy (Cai et al. 2014). The results

showed that suitable customised fuel models were of utmost
importance to obtain accurate predictions of fire behaviour.
However, these studies regarded the fuel model as a whole

without analysing sensitivity and uncertainty of the fuel-model
parameters, so the uncertain fuel-model parameters were not
identified. As illustrated in Fig. 2, fuel models can predict

Table 5. Statistics of model outputs of first-order analysis

s.d., standard deviation; CV, coefficient of variation

Parameters Mean Variance s.d. CV (%)

Rate of spread 2.74 4.23 2.06 74.97

Heat per unit area 18731.7 43047277 6561.04 35.03

Fireline intensity 937.92 670327.9 818.74 87.29

Flame length 1.77 1.19 1.09 61.57

Table 6. Statistics of model outputs of Monte Carlo simulation

s.d., standard deviation; CV, coefficient of variation

Output variable Results by mean input parameters 1-80 1-85 1-90

Mean s.d. CV Mean s.d. CV Mean s.d. CV

Rate of spread 2.66125 2.6 2.0 76.9% 2.6 2.0 76.9% 2.5 1.9 76.0%

Heat per unit area 22809.4 18984 8947 47.1% 18494 8755 47.3% 18265 8685 47.5%

Fireline intensity 1011.79 931.66 868.86 93.3% 894.61 837.06 93.6% 853.19 812.14 95.2%

Flame length 1.84456 1.771 1.184 66.9% 1.718 1.137 66.2% 1.665 1.095 65.8%

Table 7. Coefficient of variation (CV) and contribution ratio of fuel model parameters in Monte Carlo simulation

SAV, surface area-to-volume

Parameter Rate of spread Heat per unit area Fireline intensity Flame length

CV (%) Contribution CV (%) Contribution CV (%) Contribution CV (%) Contribution

1-hour time-lag loading 87.38 37.689 87.48 50.481 129.77 46.204 101.92 59.538

1-hour time-lag SAV 22.97 9.907 14.72 8.494 24.69 8.790 5.33 3.116

Live-shrub loading 25.55 11.019 21.05 12.146 4.77 1.697 6.77 3.954

Live-shrub SAV 30.46 13.139 28.35 16.358 61.12 21.759 25.05 14.632

Dead heat content 3.12 1.345 3.19 1.838 6.32 2.252 2.91 1.702

Live heat content 2.80 1.206 3.04 1.754 5.83 2.075 2.92 1.708

Fuel-bed depth 59.57 25.695 15.47 8.929 48.37 17.223 26.28 15.351
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significantly different fire behaviours because of different fuel-
model parameters (Arca et al. 2007a; Iliopoulos et al. 2013).
Thus, understanding the uncertainty of the input fuel-model

parameters is critical to fire simulation and management.
Tables 3, 4 and 7 illustrate that only a few fuel-model

parameters clearly affected the uncertainty of fire behaviours

and the rankings of sensitivity and uncertainty of fuel-model
parameters were different, except for 1-h time-lag loading for
fireline intensity and flame length. Furthermore, the rankings of

sensitivity and uncertainty were opposite for several of the fuel-
model parameters. For example, the sensitivity of 1-h time-lag
loading (0.560) was smaller than that of fuel-bed depth (0.901)
for the rate of spread, whereas 1-h time-lag loading had a higher

contribution ratio than fuel-bed depth for spread rate based on
the results of the two uncertainty analysis methods in the present
study (Tables 4, 7); dead heat content was a highly sensitive

fuel-model parameter for four variables; however, it was a poor
uncertainty parameter for all model outputs according to the
Monte Carlo uncertainty analysis results; the fuel-model para-

meter live-shrub SAV had a higher sensitivity for spread rate,
fireline intensity and flame length, but it was not identified as a
key parameter in the first-order uncertainty analysis. The above-

mentioned phenomenon occurred because a sensitivity analysis
does not consider the relationships among the fuel-model para-
meters. Thus, a parameter with less sensitivity but high uncer-
tainty is likely to have much more of an effect on uncertainty

of the model outcome than a highly sensitive fuel-model

parameter. A sensitivity analysis is not suitable for identifying
the main uncertainty sources influencing model outputs. How-
ever, an uncertainty analysis not only considers the effects of

fuel-model parameter sensitivity but also that of uncertainty of
the fuel-model parameters when determining the parameters
that significantly affect the uncertainty of the model output.

According to the Monte Carlo results, fireline intensity
had the largest CV value (95.2%), followed by rate of spread
(76.0%) and flame length (65.8%), whereas heat per unit area

had the smallest CV value (47.5%) (Table 6). This ranking of
uncertainty of the four variables was the same as the results
of the first-order analysis (Table 5). Similarly, the same sources
of uncertainty for the output variables were generated by the

first-order analysis and the Monte Carlo results. For example,
1-h time-lag SAV, live-shrub SAV 1-h time-lag loading, fuel-
bed depth and live-shrub loading were the main uncertainty

parameters for heat per unit area based on results of the first-
order andMonte Carlo analyses. Therefore, the twomethods can
both be effectively used to determine the primary sources of

uncertainty.
However, there were also some differences between these

two methods. The relative ranking of 1-h time-lag loading was

consistent for heat per unit area, but the relative rankings of 1-h
time-lag SAV, fuel-bed depth, live-shrub loading, and live-
shrub SAV were different. This may be due to the fact that the
first-order analysis method is assumed to be linear because it

does not consider the higher-order terms of Taylor expansion,
which are not appropriate for a complex non-linear model, such
as the FARSITE model. By contrast, non-linearity was consid-

ered for the Monte Carlo method. Thus, Monte Carlo is a better
method than the first-order for a fuel model parameter uncer-
tainty analysis using the FARSITE model.

The model outputs from the Monte Carlo simulations that
fully consider uncertainty of fuel-model parameters were all
smaller than the results obtained bymean fuel-model parameters
(Table 6). The discrepancy occurred because of the non-linear

relationships between the inputs and outputs of FARSITE
model. Non-linearity suggests that model input uncertainty does
not translate into model output uncertainty directly but rather

appears to reduce or magnify the effects on model outputs
significantly. Model predictions based on mean input fuel-
model parameters usually may magnify fire behaviours because

of the neglect of fuel-model parameter uncertainty. This empha-
sises the importance of considering fuel-model parameter
uncertainty when simulating wildfire behaviours.

The results of the first-order and Monte Carlo analyses
indicated that the uncertainty of the fire behaviours was signifi-
cantly affected by the fuel-model parameters uncertainty associ-
ated with spread rate, such as 1-h time-lag loading, live-shrub

loading, fuel-bed depth and live-shrub SAV, particularly 1-h
time-lag loading (Tables 5, 7). For example, the respective
contribution of 1-h time-lag loading to flame-length uncertainty

according to the first-order and Monte Carlo analyses reached
95.13% (Table 4) and 59.53% (Table 7) respectively. This is
because of the influence of heat per unit area, fireline intensity

and flame length were generated, accompanied by the rate of fire
spread (Finney 1998), as described by Eqn 1–4 in this study.
Similarly, the results of a previous study showed that 1-h time-lag
loading significantly affects fire behaviour (Sparks et al. 2002).

Different wildfire predictions

FARSITE modeling

Different fuel model
parameters

U
nc

er
ta

in
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Producing

Fig. 2. An illustration of different wildland fire predictions resulting

from the effects of the uncertainty of fuel model parameters; fire patch

map was obtained by a combination of bandMIR, bandNIR and bandRED of a

LANDSAT ETMþ image that was acquired for May 2000 and the red solid

line represents simulated fires.
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That study revealed that the fire-spread rate is the driving force
behind the uncertainty of the other relevant fire behaviours.
Therefore, the highly uncertain fuel-model parameters associ-

ated with rate of spread, including fuel-bed depth, 1-h time-lag
loading, live-shrub loading and live-shrub SAV, should be used
with caution when forecasting fire behaviour. Because live-

shrub SAV also had high contributions to heat per unit area,
fireline intensity and flame length, it should be determined
carefully when predicting wildland fires.

However, a lack of data, measurement limitations and
environmental variations often lead to high input uncertainty
of the model parameters (Beck 1987). First, a default parameter
value of the model or reference value from other regions can be

used when modelling wildfire behaviours when fuel model
parameters are lacking. A subjective decision may produce a
considerable amount of uncertainty in the fuel-model para-

meters of the model. Second, uncertainty in the fuel-model
parameter input can arise from the limitations of measurement,
such as sampling site, range of sampling and the professionalism

of the surveyors (Beck 1987; Ramsey and Argyraki 1997;
Phillips et al. 1998; De Zorzi et al. 2002; Palmer and Brohan
2011). Mean values of measured fuel-model parameters are

generally used as model input data (Burgan and Rothermel
1984), which could cause prediction errors based on our results
(Table 6). Finally, variations in environmental conditions are an
important source of uncertainty in model input parameters

(Beck 1987). Fuel-model parameters change with time (Dodge
1972; McCaw et al. 2002) and are subject to climate change
(Clark 1988) and human activities (e.g. fire suppression) (Wang

et al. 2007).
As a result, when developed without calibrating the para-

meters against fire-behaviour observations, fuelmodels aremore

likely to be unsuccessful (Cruz and Fernandes 2008). Thus, fuel
models need to be calibrated before they are used to predict fire
behaviours. For example, Cruz and Fernandes (2008) developed
fuel models for maritime pine stands using a calibration proce-

dure based on backtracking, the rate of spread, and fire intensity
as evaluation indicator. They varied the fuel-model parameters
within their range of variability to establish fuel models that best

simulated fire sprawl. They also conducted extensive field-work
to determine all fuel-model parameters using the traditional
method. According to the Monte Carlo results (Table 7), the

total contribution ratio of the fuel-model parameters, fuel-bed
depth, 1-h time-lag loading, live-shrub loading and live-shrub
SAV to the uncertainty of the model outputs exceeded 86%,

indicating that the four fuel-model parameters can take the place
of all fuel-model parameters to explain the influence of fuel-
model parameter uncertainty on model outputs. Therefore, the
four fuel-model parameters are expected to be chosen as adjust-

ment parameters during calibration.
In addition, the fuel-model parameters selected as adjust-

ment parameters for calibration should also meet two condi-

tions: (i) high sensitivity and uncertainty for model outputs, and
(ii) high temporal and spatial variability. Parameters that have
low variability were not considered because they can be accu-

rately measured in the field and can be used to predict fire
behaviours as a constant. Of the four fuel model parameters,
live-shrub SAV exhibits very low temporal and spatial variabil-
ity over the landscape for any given fuel type (Shan 2003; Scott

and Burgan 2005; Arca et al. 2007b). For example, it is widely
known that shrub-fuel models (SH6, SH7 and SH8) in the US
have the same SAV value. Studies have shown that fuel-bed

depth, live-shrub loading and 1-h time-lag loading are the
primary fuel-model parameters influencing fire behaviour
(van Wagtendonk 1996; Sparks et al. 2002). Sparks et al.

(2002) showed that fireline intensity increased significantly, if
1-h time-lag fuels increased at the expense of live herbaceous
fuels during a drought. Therefore, fuel-bed depth, live-shrub

loading and 1-h time-lag loading were finally selected as
adjustment parameters. Using FARSITE fire-simulation model
to calibrate the fuel model by reasonably tuning these high
uncertain fuel-model parameters (fuel-bed depth, live-shrub

loading and 1-h time-lag loading) until the simulated fires
(e.g. rate of spread, fire perimeter and fire size) matched the
actual fires is an effective method for developing fuel models.

This process can be used to quickly and effectively improve the
prediction capabilities of fuel models for predicting fires. More
importantly, this approach reduces the vast field workload to

determine accurate fuel-model parameters through field experi-
ments. Note that only one fire was simulated in this study, which
may not represent a full range of fire and fuel conditions.

The results of fuel-model parameter uncertainty analysis in
this study advance the fuel-model classification in boreal
forests. In general, different fuel models have widely different
fire behaviours because of different fuel-model parameter

combinations. As discussed above, the main uncertainty para-
meters that have high spatial-temporal variability were fuel-bed
depth, 1-h time-lag loading and live-shrub loading, particularly

fuel-bed depth and 1-h time-lag loading (Table 7). Therefore,
according to the differences of the measured values of the above
fuel-model parameters, we could classify fuel models more

effectively. For example, assuming that the above-mentioned
parameter values of a same fuel type have great differences, it is
necessary to establish multiple fuel models to represent this type
of fuel and the fire behaviours, such as different shrub-fuel

models (SH6, SH7 and SH8) in the US; if there is little or no
difference of the above-mentioned parameter values of a same
fuel type, one fuel model could be sufficient to represent the

characteristic of this fuel to predict fire behaviours reliably.

Conclusion

This study successfully analysed the uncertainty of fuel-model
parameter for wildfire modelling in north-eastern China. The

results indicated that only a few fuel-model parameters sub-
stantially affected uncertainty of the FARSIEmodel.Most of the
fuel-model parameters had little or no effect on uncertainty of
the model output. Of all of the fuel-model parameters, 1-h time-

lag loading had the greatest effect on model outputs for the four
fire behaviours. The results also indicated that fire-spread rate
was largely responsible for the uncertainty of other fire beha-

viours in this study. Therefore, the highly uncertain fuel-model
parameters associated with rate of spread, 1-h time-lag loading,
live-shrub loading, live-shrub SAV and fuel-bed depth should

be used with caution and determined carefully when predicting
fire behaviours.

In addition, the model outcomes attained by the mean input
fuel-model parameters were all larger than those from theMonte
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Carlo method, which considered uncertainty of the fuel-model
parameter. This finding suggests that there were non-linear
relationships between inputs and outputs of the FARSITEmodel

and the neglect of fuel-model parameter uncertainty of the
model generallymaymagnify fire behaviours (mean fuel-model
parameter input method). Thus, it is crucial to consider the

uncertainty of input fuel-model parameters when modelling
wildfire behaviours. With the average input fuel-model para-
meter method, a small change in a key fuel-model parameter is

very likely to have a large effect on model output and the
magnification error would increase with an increase in uncer-
tainty of the fuel model parameters. Unfortunately, there is great
input uncertainty in the fuel-model parameters of the model,

such as the measurement uncertainty from field surveys. As a
result, parameters of fuel models should usually be calibrated
against actual fires to predict wildfires in practice. The highly

uncertain fuel-model parameters with highly temporal and
spatial variability, including 1-h time-lag loading, live-shrub
loading and fuel-bed depth are expected to be chosen as

parameters to adjust the calibration against several actual fires
and to effectively improve the fire prediction capabilities of fuel
models. Our study provides useful references for the uncertainty

of fuel-model parameter in other regions around the world.
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