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Abstract A fundamental but unsolved dilemma is

that observation and prediction scales are often

mismatched. Reconciling this mismatch largely

depends on how to design samples on a heteroge-

neous landscape. In this study, we used a coupled

modeling approach to investigate the effects of plot

number and location on predicting tree species

distribution at the landscape scale. We used an

ecosystem process model (LINKAGES) to generate

tree species response to the environment (a land

type) at the plot scale. To explore realistic param-

eterization scenarios we used results from LINK-

AGES simulations on species establishment

probabilities under the current and warming climate.

This allowed us to design a series of plot number

and location scenarios at the landscape scale.

Species establishment probabilities for different land

types were then used as input for the forest

landscape model (LANDIS) that simulated tree

species distribution at the landscape scale. To

investigate the effects of plot number and location

on forest landscape predictions, LANDIS considered

effects of climate warming only for the land types in

which experimental plots were placed; otherwise

inputs for the current climate were used. We then

statistically examined the relationships of response

variables (species percent area) among these sce-

narios and the reference scenario in which plots

were placed on all land types of the study area. Our

results showed that for species highly or moderately

sensitive to environmental heterogeneity, increasing

plot numbers to cover as many land types as

possible is the strategy to accurately predict species

distribution at the landscape scale. In contrast, for

species insensitive to environmental heterogeneity,

plot location was more important than plot number.

In this case, placing plots in land types with large

area of species distribution is warranted. For some

moderately sensitive species that experienced

intense disturbance, results were different in differ-

ent simulation periods. Results from this study may

provide insights into sample design for forest

landscape predictions.
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Introduction

Climate warming, habitat fragmentation, and biodi-

versity loss occur at large spatial extents and over long

temporal spans. Due to resource constraints, however,

the available data to study these broad-scale phenom-

ena are collected at relatively fine scales (Miller et al.

2004; Underwood et al. 2005). For example, most

predictions of forest response to climate warming at

landscape scales are based on data (e.g., growth rate

and species composition change) collected from

experimental or observational plots (Jansen and

Bredemeier 2004; Liang et al. 2011a). Reconciling

this mismatch between observation and prediction

scales depends largely on how to place plots (plot

number and location) in a heterogeneous landscape

and how to extrapolate these results to broad spatial

scales (Miller et al. 2004).

Generally, a plot-level experiment is local in nature

and only represents the homogeneous environment in

which the plot resides (Schmitz 2005). Extrapolating

plot-level results to broad spatial scales requires a

large number of plots and assumes that they cover

variations of the environmental heterogeneity. These

conditions are not always met, however, because plot-

level data are often unavailable or inadequate in many

regions. Under these circumstances, how to place plots

in a heterogeneous landscape for broader scale

predictions becomes critical. Inappropriate sample

design, such as too few plots with limited locations

may hamper the ability for landscape predictions

(Abrahamson et al. 2011).

Species suitability to the environment varies spa-

tially in a heterogeneous landscape, and the degree of

variation indicates sensitivity of species to environ-

mental heterogeneity. Setting plots on a heterogeneous

landscape to make reliable landscape predictions is

often contingent on the sensitivity of species to

environmental heterogeneity (Hewitt et al. 2007).

Species sensitive to a heterogeneous landscape require

more plots than species that are insensitive to

environmental heterogeneity (Peignéa et al. 2009).

In addition, habitat or microhabitat preferences may

affect how species respond to environmental hetero-

geneity (Underwood et al. 2005), and consequently

affect the choice of plot location. Despite many

attempts, the individual and combined effects of

number of plots and their locations on landscape

predictions have not been fully investigated.

Much attention has been paid to how to extrapolate

plot-level results to broad spatial scales in forest

change assessment (Jenkins et al. 2001; Aber et al.

2002; Jansen and Bredemeier 2004; Chiesi et al.

2011). There are two representative approaches: direct

extrapolation and ecosystem modeling. The direct

extrapolation approach often includes averaging plot-

level data (e.g., ton/hectare for biomass) within a

forest type and extrapolating to the area of each forest

type. For example, Jenkins et al. (2001) developed

estimates of forest biomass and NPP at the plot level

using Forest Inventory and Analysis (FIA) data, which

are spatially explicit plots containing tree-level mea-

surements across most of the United States (Bechtold

and Patterson 2005). These estimates were then

aggregated by forest types to represent land area of

various forest types. Fang et al. (1998, 2001) estimated

forest biomass and carbon change of China for the

past 50 years using direct field measurements and a

national forest resource inventory database. They first

estimated biomass of each forest type using total area

of the forest type and the timber volume and biomass

expansion factor (BEF, the ratio of all stand biomass to

growing stock volume) and then extrapolated to

provincial and national levels by forest types. The

direct extrapolation approach does not typically pre-

dict future landscape dynamics.

The ecosystem modeling approach involves build-

ing mathematical relationships between the response

variables (e.g., NPP and biomass) and the environ-

mental factors in an ecosystem process model. In this

approach, a study area is often divided into grids, and

the response variables in each grid cell are simulated

by the ecosystem process model. The simulated result

for each grid cell is then aggregated to the entire study

area. Many ecosystem process models (e.g., PnET-II

and FOREST-BGC) are parameterized using gridded

input data to account for variation of physical

environments (Aber et al. 2002; Rastetter et al. 2003;

Meigs et al. 2011). Ollinger et al. (1998) used PnET-II

to estimate regional forest productivity and runoff in

conjunction with a GIS dataset for the northeastern

United States. FOREST-BGC and its derivatives,

Biome-BGC and BEPS, were used to estimate nitro-

gen deposition (Eastaugh et al. 2011) and carbon stock

(Chiesi et al. 2011) at the regional scale. Compared to

the direct extrapolation approach, ecosystem model-

ing approach is capable of simulating future landscape

dynamics.
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Both direct extrapolation and ecosystem modeling

approaches assume that plot-level data can be

directly extrapolated to the landscape scale and

ignore landscape processes such as seed dispersal

(He et al. 2008). In fact, landscape processes, which

are influenced by environmental heterogeneity, affect

vegetation dynamics and interactions at individual

sites or plots (He et al. 2008). Without accounting for

landscape processes, extrapolation from plot-level

data to the landscape scale may underestimate or

overestimate the landscape-scale response (He and

Mladenoff 1999). Thus, the objective of this study is

to introduce a coupled modeling approach that links

ecosystem processes at the plot scale and landscape

processes at the landscape scale. In this approach, an

ecosystem process model is used to simulate plot

processes and a forest landscape model, which uses

the results of the ecosystem process model as input,

is used to simulate landscape processes (He et al.

2005).

In this study, we used this coupled ecosystem and

landscape modeling approach to study the effects of

plot number and location on predictions of tree species

distribution at landscape scales. Specifically, we

(a) evaluated the relative importance of plot number,

plot location, and their interaction in predicting

species distribution and (b) investigated how plot

number and (c) plot location influenced forest land-

scape predictions. We designed a series of sample

design scenarios with different plot numbers and

locations combinations. The forest landscape model

uses only for land types covered by plots the ‘‘correct’’

input values that correspond to climate warming,

otherwise that of the current climate are used. We then

statistically examined the relationships of response

variables (species percent area) among these scenarios

and the reference scenario in which plots were placed

on all land types of the study area. We chose the

Changbai mountains Natural Reserve in Northeast

China as the study area because (a) the vegetation has

an obvious vertical distribution corresponding to

elevation changes, and thus the relationships between

species and environmental heterogeneity is strong;

(b) forests in this area are sensitive to climate warming

(Hao et al. 2001), and thus species response to the

warming climate is strong; and (c) prior studies have

developed datasets (e.g., model parameterization and

the reference scenario) from which this study can be

built upon (He et al. 2005).

Approach and methods

Study area

Our study area (4.1 9 105 ha) consisted of the

Changbai mountain National Natural Reserve

(CMNNR) and the 8 km surrounding area at 41�620–
42�490N, 127�590–128�380E. CMNNR, a dormant

volcano site located on the border of China and North

Korea (Fig. 1), protects one of the largest natural

temperate forests in the world (Shao et al. 1994; Stone

2006) and has been spared from logging and other

severe human disturbances since it was established in

1960. The area has a temperate, continental climate,

with long, cold winters and warm summers. Average

annual precipitation and temperature are 1,012 mm

and -3.2 �C, respectively (Chi et al. 1981). The

growing season is *150 days. Topographic features

differ on the four sides of the mountain, with the north

side having a relatively gentle slope (average slope

\3 %) and the other sides having greater slopes

(average 10 %) (Liu 1997; He et al. 2002).

There are four main vertical vegetation zones

corresponding to an elevation change from 613 m at

roughly the southern-most boundary to 2,691 m at the

summit of Changbai mountain (Wang et al. 1980; Yang

and Li 1985; Zhao et al. 2004) (Fig. 1a). The hardwood

forest zone extends 8 km outside CMNNR (lower than

750 m elevation) where human activities have trans-

formed the pine–hardwood forests into those mainly

composed of hardwoods (Shao et al. 1996). Within

CMNNR, from about 750 to 1,100 m, is the mixed

Korean pine hardwood forest zone that includes

Korean pine (Pinus koraiensis), aspen (Poplus davidi-

ana Dode), birch (Betula platyphylla Suk), basswood

(Tilia amuresis Rupr), ash (Fraxinus mandshurica),

oak (Quercus Mongolica), maple (Acer mono Maxim),

and elm (Ulmus propingua). The spruce–fir forest zone

(1,000–1,700 m) is dominated by spruce (Picea jezo-

ensis) and fir (Abies nephrolepis [Trautv.] Maxim),

with characteristics of typical of boreal forests. The

subalpine forest zone (1,700–2,000 m) is dominated

by mountain birch (Betula ermanii Cham) and larch

(Larix olgensis). No research was conducted for areas

above 2,000 m due to the absence of tree species.

Elevation is a physical factor governing broad-scale

forest distribution patterns (Han and Wang 2002) and

affecting land use, which is reflected by distinct

vegetation types along elevation zones in our study
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area (Fig. 1a). Aspect and slope are physical factors

governing fine-scale species composition by redistrib-

uting humidity and temperature in the environment.

However, slope has only moderate effects in our study

area because the local topography of most of the

Changbai mountains area is relatively gentle. Thus,

elevation and aspect are the most important factors

that cause environmental heterogeneity in the Chang-

bai mountains. In this study, the aspect of CMNNR

and the 8 km surrounding area were divided into four

classes: north, south, west, and east (Fig. 1b).

Approach overview

We used land types (Fig. 1c) derived from spatial

overlay of environmental factors (four elevation zones

and four aspect classes, total of 16 land types) to

represent environmental heterogeneity. We simulated

Fig. 1 Geographic site of

the study area that includes

four elevation zones (a) and

four aspect classes (b). Land

types (c) are derived by

overlaying elevation zones

and aspects. Each land type

unit is considered a

homogeneous environment
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individual species biomass under both current and

warming climate for each land type using an ecosys-

tem process model (LINKAGES). The simulated

biomass represented species suitability to the land

type and was quantified by species establishment

probability (SEP) under current and warming climate

(He et al. 1999). Thus, SEPs encapsulated the effects

of environmental factors (e.g., weather and soil) at the

plot scale. SEPs were used as input parameters for a

spatially explicit forest landscape model (LANDIS)

that predicted species distributions at the landscape

scale (Fig. 2).

To investigate the effects of plot number and

location on forest landscape predictions, we assumed

that effects of climate warming were observed only for

the land types in which experimental plots were placed

(SEPs under warming climate were used as LANDIS

inputs), whereas no climate effects were monitored on

the land types (SEPs under current climate were used

as LANDIS inputs) in which no plots were placed.

These treatments allowed us to design various sample

design scenarios in this study, including a series of plot

number and location scenarios (Fig. 2). We also had a

reference scenario from a previous study in which

plots were placed on all land types of the study area,

and forest landscape predictions were made for

climate warming (He et al. 2005).

We designed a set of plot number scenarios with

increasing plot numbers to investigate how plot

numbers influenced the forest landscape predictions.

No significant difference in species percent area

between a plot number scenario and the reference

scenario indicated that predictions based on limited

plots were similar to the prediction using a full number

of plots; a significant difference indicated that the

examined plot numbers were not sufficient to make the

forest landscape predictions. We also designed a set of

plot location scenarios with different locations but the

same numbers of plots to investigate how plot location

influenced the forest landscape predictions. The higher

the correlation was between the plot location scenario

and the reference scenario, the greater the contribution

of the location to the forest landscape predictions.

Coupling ecosystem and landscape models

The ecosystem process model LINKAGES (Post and

Pastor 1996), a derivative of the JABOWA/FORET

class of gap models, was used to simulate the

physiological response of each species to both current

and warming climate within each land type (plot scale)

(Hao et al. 2001; He et al. 2005). Individual species

biomass (output of LINKAGES) was determined

by simulating the interactions of climate (monthly

Soil and 
species 

parameters

Plot-level process
LINKAGES 

Climate 
parameters

SEPs under warming 
and current climate

Land type map

reference scenario

plot number scenarios

plot location scenarios

...

...

...

...

species distribution

Landscape-level process
LANDIS

SEPs under warming climate 
are used for land types that 
have plots

SEPs under current climate 
are used for land types that 
have no plots

Biomass

Fig. 2 The flowchart of

approach overview. Species

establishment probabilities

(SEPs) under warming and

current climate by land type

are derived from

LINKAGES, and then are

used in LANDIS to predict

species distribution at the

landscape scale. Species

distributions under different

sample design scenarios

(including a series of plot

number scenarios and plot

location scenarios) are

compared with that under

the reference scenario
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temperature and precipitation), soil (e.g., soil water

capacity, wilt point, total nitrogen, and total carbon

derived from soil survey data in CMNNR) with

ecological processes (e.g., competition, succession,

and water and nutrient cycling), and species biological

traits. These biological traits (e.g., longevity, maturity,

shade and drought tolerance, and seeding capability)

were compiled based on previous studies in this area or

derived from forest inventory data (Wang et al. 1980;

Yan and Zhao 1996; Hao et al. 2001). Compiling the

current and warming climate data is described in

Section A.1 in Appendix. Because a larger biomass

represented greater species suitability to the land type,

biomass was used to quantify species suitability to the

land type in the form of SEP. Biomass for all land

types under both current and warming climate was

converted to two sets of SEPs using an empirical

method (He et al. 1999, Section A.2 in Appendix).

SEP values range from 0 to 1, with higher values

having higher suitability to a land type (Mladenoff and

He 1999). The SEP for a given species was coincident

with a homogeneous environment (a land type) and

might vary from one land type to another. SEPs

encapsulate the effects of climate and environment on

individual tree species at the experimental plot scale

(land type) (Liang et al. 2011b).

Landscape-scale species distributions (quantified

by species percent area, which is a percentage that the

number of pixels in which a species occurs divided by

the total number of pixels of the study area) under

current and warming climate were predicted using a

coupled modeling approach that links LINKAGES

with a spatially explicit forest landscape model

(LANDIS) (Fig. 2). The core of the coupled modeling

approach was that LANDIS simulated forest succes-

sion and landscape processes (e.g., dispersal) using

SEPs derived from LINKAGES as one of the input

parameters (the other input parameters were described

in detail in He et al. 2002, 2005). In LANDIS,

according to environmental heterogeneity, a heteroge-

neous landscape can be delineated into various land

types, and each land type has two sets of SEPs of both

current and warming climate for each species

(Table 1). Species percent area at the landscape scale

under current climate was derived from the simulation

results of LANDIS under the scenario that every land

type in the study area used SEPs under the current

climate. Likewise, species percent area under warming

climate at the landscape scale was derived from the

simulation results of LANDIS under the scenario of

forest landscape predictions under warming climate

that every land type used SEPs under warming climate.

Sample design scenarios

To investigate how plot numbers influenced the forest

landscape predictions, we designed a set of plot

number scenarios with different plot numbers. The

design of the plot number scenarios was to increase

plot numbers from four (S4) to eight (S8) to 12 (S12),

with random locations for the plots (Fig. 3). We began

with four plots because there are four elevation zones

in the study area, and a plot in a specific elevation zone

generally cannot represent the characteristics of the

other elevation zones (Liang et al. 2011a). The S4

scenario was composed of four plots, one in each

elevation zone in a randomly chosen land type. The S8

scenario was composed of eight plots with one

additional plot randomly chosen in each of the four

elevation zones based on S4. The S12 scenario was

composed of 12 plots representing three plots chosen

randomly in each of four elevation zones based on S8.

To investigate how plot location influenced forest

landscape predictions, we emphasized the effects of

plot location by keeping the same numbers of plots.

The plot location scenario placed all plots on one of

four slopes (north, south, east, and west slopes,

denoted as SN, SS, SE, and SW) (Fig. 3). There are

four elevation zones, and therefore each plot location

had four plots. For example, SN was a scenario with

four plots placed on the north slope of the four

elevation zones. Each plot number and location

scenario had five replicates in which plots were

randomly chosen five times (scenario replications).

Model simulation

We used LANDIS 6.0 (www.missouri.edu/*landis.

htm), an expanded version of LANDIS 4.0 (He et al.

2005), to simulate 12 of the most common tree species

within our study area: Korean pine, spruce, fir,

mountain birch, birch, larch, oak, ash, maple, aspen,

bass, and elm. We simulated our study area from 1990

to 2190 at 5-year time steps. All spatial data were

presented at the resolution of 100 9 100 m, compat-

ible with previous simulation studies, which yielded

960 rows and 647 columns. Disturbance such as forest

harvesting, fire, and wind were not simulated because
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S4 S8 S12 SR

SN SS SE SW

Fig. 3 Schematic maps of plot number scenarios (S4, S8, S12), plot location scenarios (SN, SS, SE, and SW) and the reference scenario

(SR). The base map is land type map. Circle represents plot

Table 1 Species-specific establishment probabilities for 16 land types under the current and warming climate

Land type Current climate Warming climate

Elevation Aspect Spruce Birch Korean pine Fir Larch Spruce Birch Korean pine Fir Larch

1 The hardwood

forest zone

North 0.000 0.865 0.612 0.000 0.418 0.294 0.000 0.000 0.298 0.282

2 South 0.000 0.865 0.506 0.000 0.418 0.254 0.000 0.000 0.234 0.255

3 East 0.000 0.784 0.480 0.000 0.397 0.241 0.000 0.000 0.222 0.230

4 West 0.000 0.825 0.558 0.000 0.419 0.295 0.000 0.000 0.272 0.269

5 The mixed

Korean pine

hardwood

North 0.471 0.408 0.586 0.438 0.658 0.882 0.089 0.171 0.828 0.420

6 South 0.351 0.367 0.436 0.326 0.592 0.656 0.072 0.127 0.616 0.378

7 East 0.390 0.390 0.484 0.362 0.628 0.693 0.077 0.134 0.650 0.381

8 forest zone West 0.430 0.390 0.534 0.399 0.659 0.842 0.089 0.163 0.791 0.441

9 The spruce–fir

forest zone

North 0.702 0.078 0.108 0.660 0.322 0.016 0.479 0.669 0.012 0.212

10 South 0.522 0.064 0.080 0.491 0.290 0.012 0.431 0.498 0.009 0.191

11 East 0.551 0.067 0.085 0.518 0.292 0.013 0.457 0.553 0.010 0.202

12 West 0.670 0.078 0.103 0.630 0.339 0.015 0.457 0.610 0.011 0.212

13 The subalpine

forest zone

North 0.038 0.002 0.000 0.056 0.130 0.000 0.684 0.556 0.000 0.000

14 South 0.033 0.001 0.000 0.044 0.118 0.000 0.684 0.459 0.000 0.000

15 East 0.031 0.001 0.000 0.042 0.107 0.000 0.620 0.436 0.000 0.000

16 West 0.038 0.001 0.000 0.051 0.124 0.000 0.653 0.506 0.000 0.000
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our objective was to examine the natural successional

trajectories of the main dominant species. The model

replications (five times) started with the same input

parameters with the exception of random seed num-

bers used to account for the effects of stochastic

components, such as seed dispersal and seedling

establishment. LANDIS 6.0 statistics were used to

process the simulation results. These statistical results

were summarized as percent area. Simulation results

were analyzed by short term (0–50 years), middle

term (50–100 years), and long term (100–200 years)

separately.

Quantify the relative importance of plot number,

location, and their interaction

Initially we conducted a two-factor univariate analysis

in General Linear Model (SPSS 16.0) between the

different plot number scenarios (S4, S8, and S12) and

the reference scenario for the short, middle, and long

terms, respectively. The dependent variables (species

percent areas of simulated species under the S4, S8, S12

scenarios, each with five replicated scenarios and the

reference scenario) were tested for normality and

homogeneity of variances in the residuals. Two-factor

independent variables (plot number and location) were

both fixed factors. Type III sums of squares derived from

the univariate analysis were used to quantify the relative

importance of plot number, location, and their interac-

tion to species distribution prediction at the landscape

scale. Higher type III sums of square values indicated

stronger contributions to forest landscape predictions.

The actual type III sums of square values of plot number,

location, and their interaction were comparable within

one statistical model (analyzing one species in a certain

simulation period, e.g., oak in the short term) but not

necessarily between two or more statistical models.

Therefore, we transformed the actual type III sums of

square values into proportions for comparing the

differences of the relative importance of plot number,

location, and their interaction among short, middle, and

long terms, as well as among simulated species.

Based on our initial analysis, we conducted

ANCOVA’s (SPSS 16.0) to test for differences

between the simulated results derived from different

plot number scenarios (S4, S8, and S12) and the

simulated results of the reference scenario in the short,

middle, and long terms, respectively. The dependent

variables were species percent areas of simulated

species under S4, S8, S12 (averaging five paralleled

scenarios of S4, S8, S12), and the reference scenario.

Plot number was the fixed factor (main effect),

whereas plot location was the covariable. Least

Significant Difference was used for multiple compar-

isons on the statistical significance of the coefficients.

The within-group variance (five model replicates) was

completely caused by the stochastic components, and

the between-group variance was derived from differ-

ent plot number scenarios. This allowed us to analyze

the differences between the plot number scenario and

the reference scenario after controlling for the effects

of plot location. No significant difference between S4,

S8, S12, and the reference scenario indicated that the

predictions based on these plots were similar to the

prediction that has the full number of plots, whereas a

significant difference suggested that these plots were

not sufficient to make the forest landscape prediction.

For our final analysis, we conducted partial corre-

lation analysis between different plot locations sce-

narios (SN, SS, SE, and SW) and the reference

scenario. This allowed us to analyze the correlations of

one location and the reference scenario after control-

ling for the effects of other locations. The partial

correlation coefficient (r) was used to characterize the

relative contribution of plot locations (different

aspects) to the forest landscape prediction. The larger

the partial correlation coefficient was between plot

location scenario and the reference scenario, the

greater the contribution of this location to the forest

landscape prediction. The differences of partial cor-

relation coefficient under different plot location sce-

narios indicated different predictive potentials of the

four slopes. We also transformed partial correlation

coefficients of different locations into proportions for

comparing the differences of the relative contributions

of plot location among simulated species.

Results

Relative importance of plot number, location,

and their interaction

For spruce and birch, the proportions of type III sums of

square values for plot number were larger than those for

plot location and their interaction (Fig. 4), indicating

that the relative importance of plot number effects on

the forest landscape prediction was larger. In addition,
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there was no obvious variation for the two species

among three simulation periods on the ratios of type III

sums of square values for plot number, location, and

their interaction. This also indicated that the relative

importance of the effects of plot number, location, and

their interaction on forest landscape predictions had

little change in the short, middle, and long terms.

However, for Korean pine, the relative importance in

the three time frames had variations (Fig. 4). The

relative importance of plot number effects on forest

landscape predictions was larger in the short and middle

terms than in the long term, whereas in the long term the

interaction of plot number and location accounted for

increasing variations in the relationships between

sample design scenarios and the reference scenario.

In contrast, for fir and larch, these relationships

between sample design scenarios and the reference

scenario were otherwise quite robust to variations in

plot location and the interaction of plot number and

location. For fir, type III sums of square values of plot

number, location, and interaction accounted for 23, 41,

and 36 %, respectively, in the entire simulation period,

and for larch accounted for 26, 33, and 41 %,

respectively (Fig. 4). For the two species in the entire

simulation period, the effects of both plot location and

interaction on forest landscape predictions were larger

than plot number effects, indicating that landscape-

scale distribution predictions of these species depend

mostly on proper location.

The effects of plot number scenarios on landscape

predictions

Spruce tests showed significant differences between

the reference scenario and S4, S8, S12 in the short,

middle, and long terms, respectively (p \ 0.05,

Fig. 5), indicating that predictions under these three

plot number scenarios were not sufficient to predict

landscape-scale change. For fir and larch, no signif-

icant difference was found between the reference

scenario and S4, S8, and S12 in the three simulated

periods (p [ 0.05, Fig. 5), suggesting that predictions

based on four, eight and 12 plots were similar to

the prediction that has the full number of plots. The

differences between the reference scenario and the

three plot number scenarios of spruce were all signif-

icant, and the differences for fir and larch were all not

significant, indicating that the quality of predictions did

not change with increasing plot number. That is to say,

the predictive potentials of plots for these three species

were not sensitive to plot numbers.

However, not all species follow these patterns. For

example, for birch, prediction based on four plots was

not similar to the prediction with full number of plots,

whereas that based on eight plots was similar, showing

increasing plot number effects. Korean pine experi-

enced a more complicated situation. The predictions

based on 12 plots were similar to the prediction that

has the full number plots in the short and middle terms,

whereas in the long term eight plots were enough. The

effects of plot number not only vary with increasing

plot number, but also differ among the short, middle,

and long terms.

The effects of plot location scenarios on landscape

predictions

The partial correlation coefficients among the four

location scenarios (SN, SS, SE, and SW) and the

reference scenario in the short, middle, and long terms
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were consistent with those throughout the entire

simulation period (Fig. 6). For most of the species,

one or two aspects performed best in predicting forest

landscape change under climate warming.

For spruce, the reference scenario was more highly

correlated with SN and SE than with SS and SW,

indicating that plots on the north and east slopes made

larger contributions to landscape change predictions

(43 and 32 %, respectively) than plots on the south and

west slopes (11 and 14 %, respectively). For birch and

fir, plots on the north and south slopes made larger

contributions to landscape change predictions than

plots on the east and west slope. Moreover, distribu-

tion areas of these two species on the north and south

slope are larger than those on the other slopes. For

Korean pine, plots on both the south and east slopes

made larger contributions, whereas for larch plots on

the north and west slope made larger contributions.
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Discussion

Sample size and sampling design is an important issue

in many disciplines. For example, in a remote sensing

classification, rules and formulas exist to determine

the actual number of ground reference samples for

assessing the accuracy of individual categories (Steh-

man et al. 2003; Wickham et al. 2010). The number of

samples can be adjusted based on the relative impor-

tance of a particular category or by the inherent

variability within each category. The general consen-

sus from sampling theory is that categories that have

low variability require fewer samples and categories

that have high variability require more samples

(Congalton 1991). In ecological studies, however, it

is often unfeasible to have a large number of plots

because of relatively high human and financial costs

associated with experimental plots (Jansen and Bre-

demeier 2004). Ecological studies require considering

plot number, location, and their interaction using a

balanced approach between predictability and practi-

cality. Thus, studying sample design (plot number and

location) on a heterogeneity landscape is essential in

predictions of landscape-scale responses.

We introduced a coupled ecosystem and landscape

modeling approach to study the effects of plot number

and location on prediction of tree species distribution

at landscape scales. We designed a set of plot number

and location scenarios with increasing plot numbers

randomly placed on various land types. We set

different parameters to differentiate land types having

plots from land types having no plots. We then used

the coupled model to simulate the effects of plot

number, plot location, and their interaction on forest

landscape predictions. Our approach revealed the

sensitivity of species to environmental heterogeneity

and based on which sample design may be considered

for predicting landscape-scale responses.

Our results show that for some species highly

sensitive to environmental heterogeneity, the contri-

butions of plot number are generally larger than the

contributions of plot location. This suggests that the

high sensitivity species have different responses on

different land types. Consequently, most or all land

types need to have a plot to fully capture the species

suitability to environment. Such a finding is reinforced

by tree species in our study area. For example, spruce

is a dominant species in spruce–fir forests and has a

wider distribution than fir in the study area (He et al.

2002). Community structure of spruce–fir forest is

strongly affected by elevation and aspect (Chen and

Bradshaw 1999), resulting in varying suitability of

spruce to environment among different land types.

Under a warming climate, spruce migrates upward as

the whole system; however, during this migration,

spruce remains highly sensitive to environmental

heterogeneity (He et al. 2005). Thus, for spruce,

relatively more plots are needed to accurately predict

species distribution.

Our results also show that for species that are

moderately sensitive to environmental heterogeneity,

plot number makes a relatively large contribution to

forest landscape predictions, as do plot location and

interaction. Suitability of these species to environment

has a moderate spatial variation, which is weaker than

the variation of species with high sensitivity. Thus,

moderate number of plots is sufficient to cover all

variations of species suitability to environment. The

prediction of some plots with appropriate locations can

approximate the predictions based on the full number of

plots. This result is also reflected in tree species

simulated in our study. For example, birch is moder-

ately sensitive to environmental heterogeneity. The

suitability of birch to environment is different on some

but not all land types. The effects of plot number on

forest landscape predictions illustrate that the predic-

tions require having plots on some (e.g., land types with

large area of species distribution) but not on all land

types to cover the variations of species suitability.
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Our results show that for species insensitive to

environmental heterogeneity, the contributions of plot

location and interaction to predict species distribution

at the landscape scale are significantly larger than the

contributions of plot number. Suitability of these

species to environment has a weak spatial variation,

and thus a few plots are able to cover all variations;

however, these plots should be placed on the locations

with high contributions for prediction quality (such as

land types with large area of species distribution).

Such a finding is supported by larch, an azonal species

that is wide-spread in the Changbai mountains (Yan

and Zhao 1996; Zhao et al. 1998). Larch also adapts to

diverse environmental conditions and spans almost all

elevation zones (Leng et al. 2007). Prediction based on

four appropriate plots in the four elevation zones is

similar to the prediction based on the full number of

plots in the entire simulation period. The quality of

prediction would not vary with increasing plot num-

ber, demonstrating the weak sensitivity of larch to the

environment heterogeneity (Leng et al. 2007, 2008).

By analyzing the relative contributions of different

plot locations to forest landscape predictions, we also

found that plots on the west slope made the largest

contributions. Thus, for larch, plot location or inter-

action of number and location are important in forest

landscape predictions.

The most complicated situation that we observed

was the possible variation in relative contributions of

plot number, location, and their interaction to forest

landscape predictions in different simulation periods.

For example, for Korean pine, a dominant species in

Korean pine hardwood forests, plot number accounted

for most of the effects on predicting species distribu-

tion at the landscape scale in the short and middle

terms, whereas the long-term landscape prediction

was mainly influenced by plot location and interaction.

Our results indicate that accurate landscape prediction

requires more plots in the short and middle terms,

whereas in the long term relatively fewer plots are

sufficient. This demonstrates that Korean pine is

moderately sensitive to environmental heterogeneity

but varies in different simulation periods. There are

several reasons for this complexity. First, Korean pine

experienced intense historical harvest and showed a

strong post-harvest recovery during short- and middle-

term simulations (Zheng et al. 1997; He et al. 2002).

Predicting a dramatic increase in total area resulting

from a strong recovery would require more plots.

Although under warming climate Korean pine can

compete with spruce and fir at their lower elevation

zone, the limited seeds and dispersal of Korean pine

due to historical harvest decreased the likelihood of a

large-scale landscape change from spruce–fir to mixed

Korean pine forest (He et al. 2005; Liang et al. 2011a).

Thus, the increase in total area of Korean pine under

climate warming in the long term was mostly within

the current elevation zone. Different ratios of the

contributions of plot number and location in the short,

middle, and long terms govern different sample

designs for forest landscape predictions.

This study used standard statistic tests to determine

whether differences exist between a plot number or

location scenario with the reference scenario. Statis-

tical significance may not translate to an ecological

significance. For example, while mean values under

predictions with four plots and a full number of plots

may be statistically different, their ecological differ-

ences may be acceptable. This study did not aim to

study whether a significant statistical difference war-

rants a significant ecological difference. However,

results from this study reveal such differences and

provide a basis for studying this issue in the future.

Conclusions

We investigated the effects of plot number and

location on predicting tree species distribution at the

landscape scale. Our results indicated that for species

highly or moderately sensitive to environmental

heterogeneity (e.g., spruce and birch), increasing plot

numbers to cover as many land types as possible is the

strategy to accurately predict species distribution at

the landscape scale. In contrast, for species insensitive

to environmental heterogeneity (e.g., larch and fir),

plot location was more important than plot number in

predicting forest landscape change. In this case,

placing plots in land types with large area of species

distribution is warranted. The most complicated

situation was observed for some moderately sensitive

species (e.g., Korean pine). Plot number made a larger

contribution than plot location to forest landscape

predictions in the short and middle terms, whereas

location made a larger contribution in the long term.

Such complexity may be due to limited dispersal

capability and past human harvest that affected seed

sources and subsequently delayed recovery.
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