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Abstract. Forest fire patterns are likely to be altered by climate change.We used boosted regression treesmodelling and
theMODIS Global Fire Atlas dataset (2003–15) to characterise relative influences of nine natural and human variables on

fire patterns across five forest zones in China. The same modelling approach was used to project fire patterns for 2041–60
and 2061–80 based on two general circulationmodels for two representative concentration pathways scenarios. The results
showed that, for the baseline period (2003–15) and across the five forest zones, climate variables explained 37.4–43.5% of

the variability in fire occurrence and human activities were responsible for explaining an additional 27.0–36.5% of
variability. The fire frequency was highest in the subtropical evergreen broadleaf forests zone in southern China, and
lowest in the warm temperate deciduous broadleaved mixed-forests zone in northern China. Projection results showed an
increasing trend in fire occurrence probability ranging from 43.3 to 99.9% and 41.4 to 99.3% across forest zones under the

two climate models and two representative concentration pathways scenarios relative to the current climate (2003–15).
Increased fire occurrence is projected to shift from southern to central-northern China for both 2041–60 and 2061–80.
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Introduction

Forest fire is a frequent disturbance that burned ,67 M ha of
forests annually around the world from 2003 through 2012 (van

Lierop et al. 2015). The effects of forest fires include short- and
long-term changes in structure and function of forest ecosystems
(Bond-Lamberty et al. 2007; Liu and Yang 2014). Fire
frequency and burned area have substantially increased with

prolonged growing seasons under a warming climate (Pitman
et al. 2007; Malevsky-Malevich et al. 2008; Flannigan et al.

2009). Increases in fire frequency and burned area will pose

great challenges to forests and humans (Nitschke and Innes
2008; Carvalho et al. 2010). For example, the Canadian wild-
fires from 9 to 12 June 2015 produced extensive areas of forest

loss and spread of smoke across most of North America
(Dreessen et al. 2016).

Forest fires also occur frequently in China (Adams and Shen

2015). According to Chang et al. (2015), there were an annual
number of 8182 fires between 1987 and 2007, with an average
burned area of 398 197 ha per year. Historical changes in fire
frequency and burned area in regions of China are highly

influenced by climate variability (Zhao et al. 2009; Wang
et al. 2010; Shirazi et al. 2017). China’s climate ranges from
tropical to arctic and from wet to extremely dry, with corre-

sponding forest ecosystems from subtropical to boreal ecotones
(Piao et al. 2004) and resultant diverse fire regimes (Chen et al.
2017). Smaller fires occur most frequently in the humid and hot

CSIRO PUBLISHING

International Journal of Wildland Fire 2020, 29, 104–119

https://doi.org/10.1071/WF19039

Journal compilation � IAWF 2020 www.publish.csiro.au/journals/ijwf



subtropical evergreen broadleaf forests of southern China (Tian
et al. 2013). In contrast, larger fires are found in the temperate-
to-cool deciduous conifer forests (e.g. Larix) of north-eastern

China and usually account for the majority of area burned in the
country (Chang et al. 2015). The RCPs (Representative Con-
centration Pathways) climate scenarios released by Intergovern-

mental Panel on Climate Change (IPCC) show a trend of
increasing temperature across China between 2011 and 2100
by 0.068C for RCP 2.6 and 0.638C for RCP 8.5 per decade on

average from 11 General Circulation Models (GCMs) (Xu and
Xu 2012). Given the projected warming trend, changes in fire
frequency are therefore anticipated throughout the country.

Research into the effects of climate change on fire dynamics

in China has mostly been focused on specific regions or
provinces (Yang et al. 2012; Li et al. 2017). However, future
effects of climate change on forest fires are projected to be

highly uncertain and regionally variable (Liu et al. 2013).
Therefore, national assessments of fire patterns and future
climate must consider and summarise regional patterns and

variabilities to understand broad-scale spatial patterns of fire
occurrence, which may help policy makers design strategies in
response to climate change.

Several studies have suggested the use of fire occurrence
probability as a metric for characterising fire occurrence
(Preisler et al. 2004; Catry et al. 2009; Chang et al. 2013; Guo
et al. 2016). Fire probability, ranging from 0 to 1.0, is commonly

defined as the probability for fires to occur in a given area
(e.g. 1-km pixels) and over a defined time period (e.g. 2003–15)
considering the effects of climatic and other environmental

factors. In the present study, we applied the boosted regression
trees (BRT hereafter) approach to model spatial patterns of fire
probability under current and future climate scenarios (Liu and

Wimberly 2015, 2016). The BRTmodelling approach is flexible
and does not rely on a priori assumptions of the shape of the
response–predictor relationship; such an assumption is difficult
for traditional linear regression models to reveal (Elith et al.

2008; Parisien and Moritz 2009).
In the present study, the term fire occurrence is defined as the

probability of fire ignition at any location (1-km pixels) in

forested lands within current (2003–15) and future (2041–60
and 2061–80) time periods. Our overall objective was to explore
national-scale spatial and temporal patterns of fire occurrence

under current and future climate change across China. We
addressed the following specific issues: (1) how do current fire
patterns vary spatially and temporally over China? (2) What are

main drivers exerting the most important influence on variabil-
ity in fire patterns? (3) How would China’s forest fires likely
respond to various scenarios of future climate?

Materials and methods

Forest zones and fire seasons

China can be generally divided into five large forest zones: (1) a
cold temperate deciduous coniferous forest zone (boreal forests
in the Great Xing’an Mountains of north-eastern China, with a

low fire frequency but a high average burned area); (2) a tem-
perate deciduous mixed broadleaf–conifer forest zone; (3) a
warm temperate deciduous broadleaf–mixed forest zone (low
forest coverage and low forest fire frequency); (4) a subtropical

evergreen broadleaf forest zone (with a high forest coverage,
high fire frequency but low average burned area); (5) a tropical
rainforest zone (high forest coverage but low fire frequency)

(Guo et al. 2017) (Fig. 1).
Fire seasons in China vary by geographical region and forest

zone. Generally, north-eastern China (i.e. cold temperate decid-

uous needle-leaf forest zone and temperate deciduous mixed
broadleaf and needle-leaf forest zone) has a bimodal fire season
that spans March to June in spring and September to November

in autumn. Fire seasons span October to May in northern China
(i.e. warm temperate deciduous broadleaved mixed forests
zone). There is a long fire season from November to the end
of May in the southern part of China (i.e. subtropical evergreen

broadleaf forest zone and tropical rainforest zone).

Data sources and data management

Fire occurrence (ignition) data

We downloaded the Global Fire Atlas dataset for January

2003–December 2015 from the FTP server ftp://fusionftp.gsfc.
nasa.gov/fire_atlas/ (accessed 30 December 2018). The fire
atlas was produced with support from NASA’s Carbon Moni-

toring System program. The Global Fire Atlas was developed
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) Collection 6 MCD64A1 burned area product
(Giglio et al. 2018; Andela et al. 2019). In this dataset, clusters

of burned area were subdivided into individual fires based on the
spatial structure of estimated burn dates in the MCD64A1
burned area product. For each individual fire, the fire dataset

contains information on the geographic location (latitude and
longitude coordinates) of fire ignition (point), perimeter
(polygon) and other information (fire size, duration, daily

expansion, fire line length, speed and direction of spread). The
MODIS-based fire data here are from a mixture of surface and
crown fires. The methodology and validation of the dataset are
presented in Andela et al. (2019), while details on the 500-m-

resolution burned area product (MCD64A1 collection 6) are
described in Giglio et al. (2018). We identified 25 729 forest
fires (ignitions) between 2003 and 2015 across China with the

MODIS-basedGlobal Fire Atlas dataset, whichwas less than the
number of forest fires recorded in the government’s fire statis-
tics dataset (103 711). The mean fire size and total burned area

derived from the MODIS-based Global Fire Atlas dataset were
79.1 and 15.5% higher than those derived from the Chinese
government’s fire statistics dataset respectively, but the spatial

distributions of forest fires from these two datasets were
generally similar (Supplementary material).

The five forest zones covered 97.3% of total forest fires in
China. The other 2.7% were sparsely distributed in non-forest

dominated regions such as temperate steppes and deserts zones
in north-western China. Specifically, the subtropical evergreen
broadleaf forest zone in southern China had the highest number

of fires (69.8% of the national total), followed by the tropical
rainforest zone in southernmost China (15.3%), temperate
deciduousmixed broadleaf and needle-leaf forest zone in central

parts of north-eastern China (6.3%), then cold temperate decid-
uous needle-leaf forest zone north-eastern China (5.5%), and the
warm temperate deciduous broadleaved mixed forest zone in
central-northern China had a low fire occurrence (0.5%).

Forest fire patterns in China under climate change Int. J. Wildland Fire 105



Forest type data

Data of forest types were from the NASA MODIS Global

Land Cover product (MCD12Q1) for the year 2003 at 500-m
spatial resolution (https://modis.gsfc.nasa.gov/, accessed 18
January 2019). The forest types included evergreen conifer
forests, evergreen broadleaf forests, deciduous conifer forests,

deciduous broadleaf forests and mixed forests (Fig. 1). The
overall accuracy of the MCD12Q1 product was 50.9–70.2%
over China (Yang et al. 2017). Details about the accuracy of the

MCD12Q1 product are in the Supplementary material.

Vegetation productivity (NDVI) data

The Normalized Difference Vegetation Index (NDVI) is an
indicator of vegetation productivity (Hawbaker et al. 2013;

Argañaraz et al. 2015).We therefore used theNDVI to represent

spatial variability in vegetation productivity for the period

January to December 2003–15. We derived the monthly NDVI
data from the NASA MODIS Global MOD13A3 product at
1-km spatial resolution (https://modis.gsfc.nasa.gov/). We cal-
culated the average of 13-year monthly spring (March–May),

autumn (September–November) and annual mean (January–
December) NDVI for the study period 2003–15.

Topography data

Elevation (m), slope (8) and aspect (Hawbaker et al. 2013)

and a terrain-related index (e.g. topographic roughness index)
(Stambaugh and Guyette 2008) have been identified as the
major topographic variables related to fire occurrence. Given
that slope and aspect are more properly expressed at scales less

than 1 km and elevation may highly correlate with temperature

China
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and precipitation (Parks et al. 2011), we therefore used a
topographic roughness index to explain spatial patterns of forest
fire occurrence (Stambaugh and Guyette 2008). We derived a

30-m spatial resolution grid of digital elevation model (DEM)
data from the China Geospatial Data Cloud Platform (http://
www.gscloud.cn/, accessed 16 June 2019).We created a surface

of topographic roughness index with the DEM data based on
the ‘tri’ function in the ‘spatiaEco’ package (Evans 2018) of
R software (R Core Team 2017).

Infrastructure and population density (human-activity
related data)

Anthropogenic factors such as roads, settlements and popu-
lation density influence fire occurrence by increasing human-

initiated ignition probability (Liu et al. 2012). We obtained a
Global Roads Open Access Dataset (gROADSv1) covering
the period 1980–2010 from the Center for International
Earth Science Information Network of the Earth Institute at

Columbia University (http://sedac.ciesin.columbia.edu, accessed
5 November 2018). We derived settlement points and population
density data in the year 2000 from the Global Rural–Urban

Mapping Project (GRUMPv1) (http://sedac.ciesin.columbia.
edu). Surfaces of distance to nearest roads or settlements were
created by calculating the Euclidean distance from each pixel to

the nearest road or settlement with 1-km spatial resolution.

Climate data

Annual and seasonal temperature (8C) and precipitation

(mm) are variables used to represent climate conditions while
addressing fire characteristics (Zumbrunnen et al. 2009; Chang
et al. 2015). We acquired temperature and precipitation data

(January 2003–December 2015) with 0.18 � 0.18 spatial and
3-hourly temporal resolutions from the China Meteorological
Forcing Dataset (http//westdc.westgis.ac.cn). The national cli-
mate dataset was derived from integration of data from 740

Chinesemeteorological stations (Chen et al. 2011), and has been
used in ecological research in various regions and ecosystems in
China (Huang et al. 2016; Dai et al. 2018). We calculated the

average of the 13-year spring (March–May), summer (June–
August), autumn (September–November), winter (December–
February) and annual mean (January–December) temperature

and precipitation for the study period of 2003–15.
Future GCM data of annual temperature and precipitation

with 5-min resolution of longitude and latitude degrees were

obtained from the WorldClim version 1.4 (http://worldclim.org/)
(Hijmans et al. 2005). Based on the GCMs outputs in the
WorldClim-Global climate dataset, we selected GFDL-CM3
(Geophysical Fluid Dynamics Laboratory) and GISS-E2-R

(NASA Goddard Institute for Space Studies) to capture uncer-
tainties regarding future climate change. The GFDL-CM3 is
relatively hot and wet, whereas GISS-E2-R projects a relatively

cold and dry future. For each of the two GCMs, we used two
scenarios of greenhouse gas concentrations (RCP 2.6 and 8.5)
and two periods: 2050 (average for 2041–60) and 2070 (average

for 2061–80). The RCP 2.6 scenario assumes that annual global
greenhouse gas concentration peaks between 2010 and 2020,
and declines substantially thereafter. In the RCP 8.5, concentra-
tions would continue to rise throughout the 21st century

(Meinshausen et al. 2011). The future climate projected by the
two GCMs in WorldClim version 1.4 had been calibrated using
historical climate layers (1960–90). Details on the historical

climate layers can be found in Hijmans et al. (2005). We
compared historical mean annual temperature and precipitation
fromWorldClim (1960–90) with observations from 613 bench-

mark weather stations (1960–90) across China (http://data.cma.
cn/site/index.html). Results showed that historical annual tem-
perature and precipitation values from these two datasets were

close (Supplementary material), indicating validity of using the
GCM data for future climate in the present study.

Mean annual temperature in China would increase signifi-
cantly under both the RCPs, ranging from 2.28 to 8.58Cacross all

five forest zones by 2041–60 and 2061–80 (Fig. 2). Most of the
forest zones had increasing trends projected in mean annual
precipitation under GFDL-CM3 that ranged from 5.8 to

219.4 mm, but only the RCP 8.5 scenario of 2041–60 projected
a decreasing trend in forest zones III (�24.5 mm) and IV
(�57.7 mm). For the GISS-E2-R, forest zones II and IV had a

decreasing trend in mean annual precipitation change ranging
from�8.3 to�48.3 mm projected. Other forest zones generally
had an increasing trend in mean annual precipitation change

ranging from 0.17 to 64.8 mm projected, but only the RCP
8.5 scenario of 2041–60 projected a decreasing trend in forest
zones I (�8.4 mm) and III (�24.5 mm), and RCP 2.6 in zone I
(�57.7 mm) (Fig. 3).

Analysis

We modelled patterns of forest fires with 1-km spatial resolu-
tion. We resampled all the climate, vegetation, topography and

human activity layers to 1-km spatial resolution in the ArcGIS
environment. We resampled continuous variables (layers) using
the bilinear interpolationmethod and categorical variables using

the nearest-neighbour method. The focus of this study was to
explore spatial patterns of forest fires. Therefore, the non-
forested areas were excluded from data analyses based on the
MCD12Q1 product.

We created a fire-point dataset based on the latitude and
longitude coordinates of fire ignition location from the Global
Fire Atlas dataset. We overlaid the fire-point dataset with the

pixels of the 1-km gridded forest-type data (extracted from the
MODIS MCD12Q1 product). The pixels of forest-type data with
one or more fire occurrences (ignitions) observed were coded as

‘1’, representing fire occurred, and non-fire pixels were coded as
‘0’. The ‘0,1’ dataset was subsequently used as the response (y)
variable in BRT models. We randomly sampled the ‘0/1’-coded
pixels for each forest zone to construct and validate BRTmodels.

The number of sampling pixels for each forest zone was deter-
mined using the equation according to Peduzzi et al. (1996):

N ¼ 10� k

p

where N is the number of sampling pixels; k is the number of

explanatory variables; p is the proportion of fire pixels in each
forest zone.

There were 8713, 11 675, 54 609, 5283 and 3191 sampling

pixels for the five forest zones I–V. We randomly separated the
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sample-pixel dataset into a training dataset (70%) and a valida-
tion dataset (30%) for each forest zone. This subsampling

procedure was performed five times for each forest zone,
resulting in five random subsamples of datasets. We extracted
values of all 22 explanatory variables (Table 1) for these sample

pixels for the five forest zones. We used the training dataset to
construct BRT models and the validation dataset to evaluate the
performance of models for each forest zone.

High correlation between explanatory variables may make
variable redundant in a model. It is also important to reduce
collinearity to strengthen the interpretation of BRT model out-

puts (e.g. the relative importance of variables). We used the
Generalised Variance Inflation Factor (GVIF) approach to test
for possible multicollinearity among the 22 explanatory vari-
ables (Fox and Monette 1992). We used the rule of thumb that

when the GVIF index .5, then the collinearity of given

explanatory variables would be problematic and they should
be removed in the iterative process. As the result, we only

included nine explanatory variables in subsequent fire occur-
rence model fitting and data analyses (Table 1).

Converting fire occurrence to fire probability (BRT model
construction)

Weapplied the boosted logistic regression trees (BRT) approach
to model spatial patterns of fire probability for the entire 13

years (2003–15) based on the training data from the Global Fire
Atlas dataset. The BRT model is a form of logistic regression
that models the probability of a fire occurring, y ¼ 1, at a

location with explanatory variables (covariates) X, P(y ¼ 1|X).
The fire probability is modelled via a logit function: logit
P(y ¼ 1|X) ¼ f(X). To minimise predictive error, we tested

several combinations of key fitting parameters of the BRT
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model (learning rate, tree complexity and number of trees) as

recommended by Elith et al. (2008) (Table 2). We ran the BRT
models five times using the randomly sampled training dataset
(70%) for each forest zone. We used the ‘gbm’ package
(Greenwell et al. 2018) in R (R Core Team 2017) to construct

BRT models referencing the R scripts developed by Elith et al.

(2008).
We evaluated the performance of the BRT models using the

area under curve (AUC) of a receiver operating characteristic
curve (ROC) plot with the randomly sampled validation dataset
(30%) for each forest zone. The AUC was used to measure the

probability of correctly classifying a random pair of fire and
non-fire observations. AUC values varied from 0.5 (random
discrimination) to 1.0 (perfect discrimination), and values

above 0.8 indicated excellent performance of a model in

discrimination (Vilar del Hoyo et al. 2011; Guo et al. 2016).

We calculated the AUC values with the ‘ROCR’ package (Sing
et al. 2005) in R (R Core Team 2017).

Quantifying relative importance of explanatory variables

We used the BRT models to quantify the relative importance of
explanatory variables on fire probability for each forest zone.

The BRT model calculated the relative importance of explana-
tory variables using the formula developed by Friedman (2001).
Calculations of a variable’s relative importance in the BRT

model were based on how often a variable was selected in
splitting a tree (tree node), weighted by the squared improve-
ments to the model as a result of each split, and averaged over

all trees (De’ath 2007; Elith et al. 2008). This gave a relative
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measure of variable importance in the BRT model. The relative

importance of each variable was scaled so that the sum added to
100; a higher number indicated stronger influence on fire
occurrence (Elith et al. 2008).

Projection of future fire changes

Future fire probabilities were projected using the BRTmodel for
2041–60 and 2061–80 under the twoGCMmodels and twoRCP
scenarios and assuming stable vegetation and other environ-

mental and human variables. Relative changes of fire occur-
rence probability for each 1-km pixel between the baseline
(current) and future years were calculated as:

DPchange ¼ Pfuture � Pcurrent

Pcurrent

� 100%

where Pfuture and Pcurrent represent fire probability for future
years (2041–60 and 2061–80) and current baseline (2003–15)

respectively; DPchange represents changes of fire probability
between current and future climate scenarios.

Results

Model valuation

The baseline fire models (BRTs) were evaluated against the
AUC statistic, and the evaluation showed satisfactory results in
discriminating presence or absence of fire on a pixel basis. The

AUC values ranged between 0.831, 0.887, 0.820, 0.702 and

0.761 for forest zones I, II, III, IV and V respectively (Fig. 4). As

noted before, an AUC value of 0.5 represents random assign-
ment whereas 1.0 represents perfect discrimination.

Relative importance of explanatory variables in the models

We ranked explanatory variable groups by forest zones
according to their total relative contribution (relative
importance) (Table 3). Specifically, according to the relative
importance values (%) calculated with the BRT models for

explanatory variables by forest zones, the set of climate vari-
ables ranked first in forest zones I (41.8%), II (37.1%),
III (40.5%), IV (43.1%) and V (43.5%). The human variable

group was another important contributor and ranked second in
forest zones I (33.6%), II (32.8%), III (27.0%), IV (31.9%)
and V (36.5%). Vegetation (10.4–23.9%) and topography

(9.3–10.3%) variable groups generally ranked low in terms of
their contributions to fire occurrence. For individual variables,
we found that temperature, precipitation, population density,

distance to settlement and vegetation productivity (NDVI) were
commonly ranked as the most important variables, whereas
variables of forest type and topographic roughness index were
less important in most forest zones in China (Fig. 5).

Spatial patterns under current climate

The fire probability, as shown on the Fig 6b, developed using the

BRT model ranged from 0.0006 to 0.7726 with a median value
of 0.0118 across the entire forested land of China between 2003

Table 1. Summary of vegetation, topography, human and climate variables used in explaining and predicting fire occurrence

GVIF (Generalised Variance Inflation Factor) was used to measure the amount of multicollinearity in the explanatory variables. This study used the rule of

thumb that when GVIF. 5, then collinearity in the explanatory variable exists and is excluded in the boosted regression tree model construction. NDVI,

Normalized Difference Vegetation Index.

Variable group Variable name Unit GVIF value Source and original spatial resolution

Vegetation Forest type Class 1–5 3.3 NASA MODIS Global MCD12Q1 Product

(https://modis.gsfc.nasa.gov/), 500m

Mean spring NDVI (March–May) Range: –1 to 1 3.1 NASA MODIS Global MOD13A3 Product

(https://modis.gsfc.nasa.gov/), 1 kmAutumn NDVI (September–November) Range: �1 to 1 .5.0

Annual NDVI (January–December) Range: �1 to 1 .5.0

Topography Topographic roughness index Dimensionless 1.3 China Geospatial Data Cloud Platform (http://

www.gscloud.cn/), 30m

Human Distance to nearest road km 1.5 Center for International Earth Science Infor-

mation Network (http://sedac.ciesin.columbia.

edu), shape files

Distance to nearest settlement km 1.6

Population density No. people km�2 1.1

Climate Max. spring temperature (March–May) 8C .5.0 China Meteorological Forcing Dataset (http//

westdc.westgis.ac.cn), 0.18� 0.18Min. spring temperature (March–May) 8C .5.0

Max. summer temperature (June–August) 8C 2.5

Min. summer temperature (June–August) 8C .5.0

Max. autumn temperature (September–November) 8C .5.0

Min. autumn temperature (September–November) 8C .5.0

Max. winter temperature (December–February) 8C .5.0

Min. winter temperature (December–February) 8C .5.0

Annual temperature (January–December) 8C .5.0

Mean spring precipitation (March–May) mm .5.0

Mean summer precipitation (June–August) mm .5.0

Mean autumn precipitation (September–November) mm 2.2

Mean winter precipitation (December– February) mm 2.2

Mean annual precipitation (January–December) mm .5.0
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and 2015. These results indicate that within a 1-km pixel, there
would be as low as 0.06% and as high as 77.3% chance of a fire
occurring over the 13 years of study. We found considerable

variability in the estimated probability of fire occurrence among
and within the five forest zones. Predicted high probability
was generally distributed in north-eastern and southern China.

Central-northern China was identified as having lower proba-
bility of fire occurrence throughout (Fig. 6b). Moreover, the
BRT model-predicted fire patterns generally agreed with the

MODIS observed fires (Global Fire Atlas dataset) (Fig. 6a).

Spatial patterns under future climate

In general, future fires projected under climate change scenarios
had similar distributions (fires mainly located in southern and
north-eastern China) compared with the baseline, but with

increased values of fire occurrence probability (Fig. 7). In the
results, areas with projected high probability of fire appear to
have shifted from southern to central-northern China, which

was more significant under the GFDL-CM3 climate scenarios
(Fig. 8).

Specifically, the percentage of pixels with an increasing

trend in fire probability ranged from 43.3 to 99.9% under the
GFDL-CM3 scenarios, and 41.4 to 99.3% under the GISS-E2-R
scenarios compared with the current climate. Within

Table 2. Key fitting parameters of final boosted regression tree (BRT) models for five random samples of each forest zone

Parameters were selected based on the stepwise procedure. Family specifies the distribution of the response variable in the BRT tree model (here the Bernoulli

distribution for binary ‘‘0,1’’ fire occurrence data). The learning rate determines the contribution of each tree to the growing BRT tree models, and the tree

complexity controls the maximum depth of each tree (i.e. highest level of variable interactions allowed). Number of trees specifies total number of trees to be

fitted in BRT models. Forest zones refer to Fig. 1

Forest zones Samples Parameters

Family Learning rate Tree complexity Number of trees

Zone I Sample 1 Bernoulli 0.001 5 650

Sample 2 Bernoulli 0.0025 5 1400

Sample 3 Bernoulli 0.001 5 850

Sample 4 Bernoulli 0.005 5 600

Sample 5 Bernoulli 0.005 5 700

Zone II Sample 1 Bernoulli 0.0025 5 2300

Sample 2 Bernoulli 0.01 4 650

Sample 3 Bernoulli 0.005 5 1150

Sample 4 Bernoulli 0.0025 5 1200

Sample 5 Bernoulli 0.0025 5 1400

Zone III Sample 1 Bernoulli 0.005 5 500

Sample 2 Bernoulli 0.0025 5 3450

Sample 3 Bernoulli 0.005 5 1100

Sample 4 Bernoulli 0.01 5 300

Sample 5 Bernoulli 0.005 5 1350

Zone IV Sample 1 Bernoulli 0.0025 4 950

Sample 2 Bernoulli 0.001 5 800

Sample 3 Bernoulli 0.001 5 1400

Sample 4 Bernoulli 0.001 3 1150

Sample 5 Bernoulli 0.001 5 950

Zone V Sample 1 Bernoulli 0.005 4 550

Sample 2 Bernoulli 0.0025 5 850

Sample 3 Bernoulli 0.001 5 2300

Sample 4 Bernoulli 0.005 4 500

Sample 5 Bernoulli 0.001 5 2000
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Fig. 4. Area under curve of the receiver operating characteristics curve for

boosted regression tree models with the 30% validation dataset by forest

zone. Forest zones refer to Fig. 1.
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GFDL-CM3, the highest fire probability increase (by 99.9%)
was in zone I (RCP 8.5 in 2061–80) and lowest (by 43.3%)
in zone V (RCP 2.6 in 2061–80). For GISS-E2-R, the highest

increase (99.3%) was seen in forest zone I (RCP 8.5 in

2061–80) and lowest (41.4%) in zone V (RCP 2.6 in
2041–60) (Table 4).

For each RCP scenario by forest zone and GCM model, we

divided the percentage of pixels with an increasing trend of fire

Table 3. Explanatory variable groups rankedaccording to their relative importance value (%) calculatedwith boosted regression tree (BRT)models

for each forest zone

The relative importance value (relative influence) of explanatory variables measures the number of times variables are selected for splitting trees weighted by

the squared improvement to BRT models. Group names refer to Table 1 and forest zones refer to Fig. 1

Forest zone First Second Third Fourth

Group name Importance Group name Importance Group name Importance Group name Importance

Zone I Climate 41.8 Human 33.6 Vegetation 14.3 Topography 10.3

Zone II Climate 37.4 Human 32.8 Vegetation 20.5 Topography 9.3

Zone III Climate 40.5 Human 27.0 Vegetation 23.9 Topography 8.6

Zone IV Climate 43.1 Human 31.9 Vegetation 14.8 Topography 10.2

Zone V Climate 43.5 Human 36.5 Vegetation 10.4 Topography 9.6

Max. summer temperature

Mean spring NDVI

Forest type

Topographic roughness index

Distance to nearest settlement

Population density

Distance to nearest road

0 10 20 30

0 10 20 30

0 10 20 30

0 10 20 30
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Relative importance (%)

Relative importance (%)
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Zone IMean winter precipitation

Mean autumn precipitation
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Fig. 5. Relative importance (%) (mean � s.d.) of explanatory variables on fire occurrence probability by forest

zones. Forest zones refer to Fig. 1. NVDI, Normalized Difference Vegetation Index.
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occurrence probability in 2061–80 by percentage of pixels with
an increasing trend of fire occurrence probability in 2041–60
(Table 4).We found that therewere no remarkable differences in

changes of fire probability between 2041–60 and 2061–80 for
both GFDL-CM3 and GISS-E2-R scenarios. Specifically, for
both the GCM models and both RCP scenarios, the percentage

of pixels with an increasing trend of fire occurrence probability
in 2061–80 was 0.87–1.15 times that in 2041–60 (Table 4).

Discussion

Effects of explanatory variables

Forest fires in China were not randomly distributed but showed
an aggregative distribution pattern, mainly located in the south
and north-east parts of China, demonstrating that fire occurrence
is not a random process, but exhibits a high degree of clustering

on landscapes and regionally, driven by climate (Tian et al.

2013; Chang et al. 2015). This situation has been observed in

other countries such as the United States (Hawbaker et al. 2013)
and Australia (Russell-Smith et al. 2007).

Spatial patterns of forest fires are a function of numerous

influencing factors such as climate, topography, vegetation
and human activity. Among the factors considered in this study
in China, we found that climatic factors have the greatest

influence on patterns of fire occurrence, which is in agreement
with results from an extensive body of fire-science studies
(Pitman et al. 2007; Flannigan et al. 2009; Liu et al. 2012),

such as wildfires of United States (Hawbaker et al. 2013) and
Australia (Russell-Smith et al. 2007). In the present study, it is
evident that higher fire probabilities are correlated strongly
with increased precipitation (rainfall), which favours vegeta-

tion growth (i.e. increasing biomass production) if there are
also related high temperature (drier fuels) conditions in the
region (O’Donnell et al. 2011; Zhang and Lim 2019). How-

ever, there are some other underlying causes that shape fire
patterns in China. Previous studies have suggested that fire
patterns may be associated with weather events such as

thunderstorm activity that are related to precipitation and
warm temperatures, and could provide a mechanism for start-
ing fires (e.g. lighting fires). For example, Liu et al. (2012)

suggested that areas with the greatest chance of lightning fires
were distributed in the northern part of forest zone I (cold
temperate deciduous coniferous forests in north-eastern
China), which coincides with the highest predicted increases

of annual temperature and precipitation.
We found that human activity variables (e.g. distance to

nearest settlements and roads) were also important in shaping

fire patterns. These findings reinforce claims that, despite the
strong influence of climate, effects of human activities cannot be
ignored (Syphard et al. 2007; Achard et al. 2008; Ganteaume

et al. 2013). For example, Russell-Smith et al. (2007) found that
most fires inAustralia appears to be anthropogenic, especially in
the northern wet–dry tropics and arid Australia. In the United
States, human-related variables were ranked highest in explain-

ing fire occurrence patterns in the Central Plains, the Mixed-
wood Plains, and the Ozark Ouachita Appalachian forests
(Hawbaker et al. 2013). Some studies have suggested that fire

occurrence was high when the distance to settlements or roads is
low (Romero-Ruiz et al. 2010). For example, Catry et al. (2009)
reported that ,98% of fires occurred less than 2 km from the

nearest roads in Portugal. In China, for example, a large number
of people reside in low-relief plains in forest zone II (the
temperate deciduous mixed broadleaf–conifer forests) and have

a significant influence on regional fire regimes, especially from
their farming activities, as they tend to burn crop residues before
planting (Zhang et al. 2015). Forest zone III is characterised by
low forest coverage and low forest fire frequency, but these

areas may burn if given a chance, particularly under higher
human activity andwarmer climate conditions. It is worth noting
that in China, fires in areas with high population density are

easier to detect and suppress in time once they occur, and
consequently the burnt area is usually smaller than in areas with
low population density, such as in forest zone I (cold temperate

deciduous coniferous forests zone).
Under current conditions, fires were most frequent in the

evergreen broadleaf forest zone (zone IV) located in the south-
ern part of China. In this region, fires occur in coniferous forests,

China

(a)

(b)

Forest zone

Fire occurrence (2003–15)

China

Forest zone

Fire occurrence probability
High : 0.772555

Low : 0.00062525

0 625 1250 2500

0 625 1250 2500
km

km

Fig. 6. Spatial distribution of (a) fire occurrence (2003–15), and

(b) boosted regression tree model predicted fire occurrence probability

under current climate.
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such as Masson pine (Pinus massoniana) and Chinese fir
(Cunninghamia lanceolata) forests (Pan et al. 2013). The high

frequency of fires in this zone is related to the strong effects of
climate and human activity. In southern China, strong and dry
valley winds occur frequently in early spring each year, which

thus leads to favourable conditions for fire ignitions (Chang
et al. 2015). Moreover, road networks are well developed and

population density is high in this region. Agricultural cultivation
is also near settlements and roads in this region. Fire is a popular
tool for agricultural activities (e.g. burning grasses), and

Fire occurrence probability
High : 0.841368

Low : 0.000667613
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(e) (f )
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Fig. 7. Predicted fire occurrence probability by Global Circulation Models (GF: GFDL-CM3; GS: GISS-E2-R)

and Representative Concentration Pathways (RCP) scenarios (RCP 2.6 and 8.5) and time periods (2041–60 and

2061–80).
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agricultural fires have escaped and burned adjacent forests

frequently in this region (Tian et al. 2013).
Compared with climate and human activities, forest types in

China have a relatively small role in ourmodel in explaining fire

patterns across all five forest zones. With strong effects from

climate and human activities, it is possible that effects by forest
types are already explained in effects of climate (e.g. tempera-
ture and precipitation) and human activities. Moreover, we
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Fig. 8. Relative changes in fire occurrence probability between future Representative Concentration Pathways

scenarios (RCP 2.6 and 8.5) and current climate byGlobal CirculationModels (GF: GFDL-CM3;GS:GISS-E2-R)

and time periods (2041–60 and 2061–80).
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modelled fire occurrence patterns using forest type data at 1-km
spatial resolution, which may not capture spatial variation of

forest type well.

Effects of climate change on future fire patterns

The GFDL-CM3 projections are relatively warmer (higher

temperature) and wetter (higher precipitation) than those of
GISS-E2-R (Figs 2 and 3). Normally, wetter climate projections
should lead to decreased fire activities. However, our results

showed that the GFDL-CM3 scenarios projected greater
increases in fire occurrence than the GISS-E2-R scenarios
(Table 4). This supports the claim that an increase in tempera-

ture would greatly offset increases in precipitation at a broad
scale (Boulanger et al. 2013), particularly in forest zone I (cold
temperate coniferous forests in north parts of north-eastern
China). In a forest landscape, higher temperatures can contrib-

ute to increasing transpiration and thus decreasing moisture
content of live fuels, leading to an increase in the probability of
fire occurrence. Moreover, previous studies have shown that

warmer climates could extend vegetation growing seasons and
increase plant production and dry fuel availability in late
autumn, and consequently fire occurrence would increase sub-

stantially. For example, warmer climates and longer vegetation
growing seasons in recent decades explain much of the large fire
occurrence patterns in the western United States (Westerling

et al. 2006; Westerling 2016).
Our results showed that some regions in China such as forest

zones I (north parts of north-eastern China) and III (central-
northern China) would experience significant increases in fire

probability in future years compared with the current period,
whereas other areas (e.g. most areas of forest zone V) would
remain stable. The regional variability is generally consistent

with the relative importance of the explanatory variables under
baseline conditions (2003–15). For example, forest zone I
(i.e. boreal forests of north-eastern China) is projected to have

future higher temperatures (Fig. 3) compared with current
conditions; at the same time, 78.9–99.3% of the zone is
projected to have increased fire probabilities in 2041–60 and

2061–80. This is similar to recent findings in the literature such
as Liu et al. (2012) where fire density (number of fires per
1000 km2 per year) in the boreal forests of China is reported to

increase 30–230% in 2081–2100. But we also found that the
effect of climate change on fire occurrence was constrained by
human activity. For example, although temperature would

increase across all scenarios in both 2041–60 and 2061–80 in
forest zone V (southern China), only 41.4–59.6% of pixels
would show an increasing trend. In southern China, agricul-

tural cultivation is mixed with developed lands and fire is a
popular tool for agricultural activities (e.g. burning grasses on
wasteland). Agricultural fire use has become a major source of
forest fires. We therefore assume that the temperature effect

was constrained by human activity effects, which explained
36.5% of the spatial variation of fire occurrence in forest
zone V.

Limitations and uncertainties

Long-term and large-scale data are important for projecting
responses of wildland fires to climate change. However, such

historical data are usually unavailable or inconsistent, which
may lead to limitations and uncertainties in our study. Fire
occurrencesweremodelled together regardless of fire types (e.g.

lightning-caused fires and human-caused fires) in this study.
Lightning-caused fires occur more often in isolated and high-
elevation areas, whereas human fires show different distribution
patterns as they are most frequent at lower elevations with high

population density. Therefore, the relative importance of the
explanatory variables (e.g. vegetation and topographic para-
meters in this study) may be different if lightning-caused fires

and human-caused fires were modelled separately.
We used the 13-year temperature and precipitation data to

build the fire occurrence model. Short-term climate data may

not capture long-term variability of the fire–climate relationship
(Hawbaker et al. 2013), which may affect the comparability of
fire occurrence under current (2003–15) and future climates

(2041–60 and 2061–80). Short-term studies should be carefully
examined when extrapolating the results to long-term fire–
climate relationships. Furthermore, given that fires tend to occur
following drought events, it would be valuable in such a study to

include antecedent climate, e.g. drought conditions for half a
month before fire ignition.

We assumed human activity and vegetation during 2041–60

and 2061–80 would be similar to the present (2003–15), but fire
patterns could be a function of changes in vegetation composi-
tion, structure and distribution because of climate change

(Mitchell et al. 2014; Keane et al. 2018). The changed vegeta-
tion structures and patterns could affect fire regimes in future
(Pausas and Bradstock 2007) in different relationships, which
would in turn alter the composition and structure of forests. The

next step therefore would be to incorporate vegetation dynamics
models to address feedback effects of vegetation to fire caused
by a changing climate (Flannigan et al. 2005).

Conclusions

Forest fires primarily occurred in southern, south-western and
north-eastern China during the years between 2003 and 2015.
Climate variables had primary effects on spatial variability of

Table 4. Percentage change of pixels with increased fire occurrence

probability from general circulation models (GFDL-CM3 and GISS-

E2-R) and RCP (Representative Concentration Pathways) scenarios

(RCP2.6 and 8.5) and time periods (2041–60 and 2061–80) compared

with current climate

Forest zones refers to Fig. 1

Forest zone Time GFDL-CM3 GISS-E2-R

RCP2.6 RCP8.5 RCP2.6 RCP8.5

Zone I 2041–60 99.6 99.8 78.9 94.1

2061–80 99.8 99.9 82.5 99.3

Zone II 2041–60 95.8 97.1 94.8 95.4

2061–80 96.2 96.7 94.3 96.6

Zone III 2041–60 96.8 96.7 89.5 91.6

2061–80 95.1 97.0 88.1 94.6

Zone IV 2041–60 84.0 89.6 70.4 76.5

2061–80 83.1 92.2 69.3 81.5

Zone V 2041–60 50.0 51.0 43.3 44.4

2061–80 43.3 59.6 41.4 51.1
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fire occurrence; human activities were secondary. The model-
ling results showed that, under future climate scenarios, the
percentage of pixels with an increasing trend in fire probability

ranged from 41.4 to 99.9%. High-fire-occurrence regions would
shift from south to central-north parts of China for both 2041–60
and 2061–80. This researchwill aid in providing a national-scale

understanding of future potential fire patterns in China and help
policymakers to design fire management strategies to mitigate
potential risks.
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