
Vol.:(0123456789)1 3

J. For. Res. (2021) 32:569–577
https://doi.org/10.1007/s11676-020-01167-x

ORIGINAL PAPER

Spatial heterogeneity of dead fuel moisture content in a Larix 
gmelinii forest in Inner Mongolia using geostatistics

Heng Zhang1 · Shihao Ma1 · Ping Kang1 · 
Qiuliang Zhang1 · Zhiwei Wu2 

Received: 25 August 2019 / Accepted: 20 November 2019 / Published online: 23 August 2020 
© Northeast Forestry University 2020

control of the sampling interval, and increasing the sampling 
intensity can reduce the error. When the sampling intensity 
is increased to more than 16 and the sampling interval 3 m, 
the standard error is < 15%. The spatial heterogeneity of fuel 
moisture content is best revealed by increasing sampling 
density, sampling in different fire seasons, and in different 
slope directions and positions. The results can provide a sci-
entific basis for forest fire prediction and prevention.

Keywords  Forest combustibles · Spatial heterogeneity · 
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Introduction

The moisture content of forest fuels determines the difficulty 
of fire control and rate of spread (Li et al. 2015) and is a key 
factor in fire risk and fire behavior prediction (Zhang et al. 
2018). It has strong spatial heterogeneity, i.e. horizontal and 
vertical distribution, and will change the distribution of fire 
spread rate and direction (Wang et al. 2012). To accurately 
estimate the probability of the occurrence of forest fires and 
the spatial characteristics of fire spread, understanding fuel 
moisture content and its spatial heterogeneity is necessary. 
Spatial heterogeneity refers to the complexity and vari-
ability of system or system elements, including the spatial 
composition, configuration and correlation of system ele-
ments (Bi et al. 2006). Geostatistics is an effective tool for 
studying spatial heterogeneity of environmental factors and 
was first proposed in the 1960s (Matheron 1963). It was 
first applied in the mining and petroleum sectors (Zhang 
et al. 2009) and widely used in the analysis of spatial pat-
terns of environmental factors and simulation of ecological 
processes, especially in geology, ecology, water resources 
and soil science (Wang et al. 2001). In recent years, there 

Abstract  Spatial heterogeneity of fuel moisture content 
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have been studies of spatial heterogeneity using geostatistics 
(Shi 2012; Jing et al. 2016), mainly of soil nutrients and 
soil water content (Liu 2013; Fu et al. 2014; Zhang 2016; 
Song et al. 2019). There have been few studies on the spatial 
heterogeneity of water content of forest fuels. Ivanov et al. 
(2010) studied the spatial heterogeneity of soil water and 
found that its heterogeneity index had a lag dependence on 
the average water content. This characteristics can inhibit 
the spatial heterogeneity of soil water after rainfall affected 
by topography, thereby enhancing the spatial heterogene-
ity of soil content. In terms of the spatial heterogeneity of 
the moisture content of forest fuels, field sampling intervals 
and methods have considerable impact on the estimation of 
fuel moisture content. Mao et al. (2012) noted that it was 
important to determine the appropriate sampling interval and 
sampling method for reducing errors. Ettema and Wardle 
(2002) analyzed using geostatistics how the spatial distribu-
tion of soil organisms affected plant growth and plant com-
munity structure. The results were dependent on the spatial 
resolution as defined by sample size, sampling interval, and 
analysis variables. Liu and Shao (2012) studied the spatial 
heterogeneity of soil water content in reclaimed grasslands 
in the loess area, and analyzed the impact of sampling inter-
val and concluded that a small sampling interval could rep-
resent the real spatial heterogeneity of soil water content, 
but with an increase of sampling interval, the variation of 
spatial heterogeneity smaller than the sampling scale may 
be hidden. Traditional statistical methods are difficult to 

spatially characterize the impact of field sampling intervals 
and methods on the estimation of fuel moisture content. In 
contrast, geostatistics can effectively address this problem.

In this study, the dead fuel of a Larix gmelinii forest in 
the Saihanwula Nature Reserve was sampled in the litter 
layer, semi-humus layer, and humus layer in three directions 
to measure moisture content. Geostatistics was used (1) to 
reveal the spatial heterogeneity of the dead fuel moisture 
content and to analyze factors influencing spatial heteroge-
neity; and (2) to estimate total water content of the sample 
area by simulated sampling and to analyze the influence of 
sampling interval and sampling intensity on the standard 
error of the moisture content, making the statistical data 
closer to reality. The results of this study will be important 
for preventing forest fires and for understanding the dynam-
ics between surface and underground fires.

Materials and methods

Study area

The Inner Mongolia Saihanwula Nature Reserve is in 
the northern part of the Bahrain Right Banner, Chifeng 
City, Inner Mongolia Autonomous Region, China 
(118° 18′–118° 55′ E, 43° 59′–44° 27′ N) (Fig. 1). The 
average elevation is 1000  m.a.s.l., and the climate is 
mid-temperate semi humid. Annual average precipitation 

Fig. 1   Location of the study 
area
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is approximately 400 mm, annual average temperature 
is 2 °C (Yan et al. 2017). The area belongs to the for-
est steppe ecotone with the vegetation dominated by for-
ests with a coverage of 61.9%. The main tree species are 
Xing’an larch (Larix gmelinii), aspen (Populus davidiana 
Dode), white birch (Betula platyphylla Sukaczev) and 
Mongolian oak (Quercus mongolica Fisch. ex Ledeb.) 
(Zhang et al. 2008).

Field sampling

During the autumn fire prevention period in mid-Septem-
ber 2017, a typical area of a Larix gmelinii forest was 
selected in the Reserve and a 100 m × 100 m sample area 
established on a sunny slope at 1890 m.a.s.l. Three tran-
sects were taken in three directions: V (vertical) transect 
was from the top to the bottom of the slope, H (horizontal) 
transect was perpendicular to it, and O transect was on 
the angle between them. The length of each transect was 
96 m, the distance between the two points of the first 20 
points was 0.3 m, 6 m in total, the distance between the 
two points of the last 60 points was 1.5 m, 90 m in total 
in three directions (Fig. 2). In the absence of precipitation 
for five consecutive days, three layers—litter layer, semi-
humus layer and humus layer, were sampled in three direc-
tions, one sample from each sampling point, numbered and 
weighed (wet weight) on site, placed in an envelope and 
taken to the laboratory for drying.

Calculation of fuel moisture content

Samples were dried to a constant weight after 8  h at 
105 °C, and the moisture content in each layer was calcu-
lated using the following formula:

where M is the absolute fuel moisture content (%), WH the 
fuel wet weight (g), WD the fuel dry weight (g).

After calculating the fuel moisture content, the maximum, 
mean, variance, standard deviation and coefficient of varia-
tion of the moisture content were analyzed to reveal spatial 
heterogeneity.

Calculation of spatial heterogeneity of fuel moisture 
content

Heterogeneity is the product of continuous interaction of 
basic ecological and physical environmental processes 
on spatial and temporal scales (Han and Wang 2002). A 
semivariogram is a graph of how semi-variance changes as 
the distance between observations changes. In this study, 
semivariogram analysis and GS + 9.0 geostatistical analysis 
software were used to establish the theoretical model of the 
semivariogram. The moisture content and its spatial hetero-
geneity are described by the sill value (value on the y-axis), 
nugget coefficients and fractal dimensions.

The variation function describes the spatial heterogene-
ity of the moisture content, indicating changes at different 
sampling intervals. The calculation formula is:

where γ(h) is the semivariogram; N(h) is the sample loga-
rithm at a sampling interval of h; Z is the regionalized ran-
dom variable; Z(xi) and Z(xi + h) are measured values of 
moisture content at xi and xi + h, respectively.

Semivariogram models include spherical, exponen-
tial, Gaussian, and linear (Hernandez-Stefanoni and 
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Fig. 2   Schematic diagram of the sampling site Fig. 3   Schematic diagram of an ideal semivariogram curve
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Ponce-Hernandez 2006). In this study, the dead fuel moisture 
content and sampling interval were fitted with spherical, expo-
nential, Gaussian and linear semivariogram models. Figure 3 is 
a schematic diagram of an ideal semivariogram curve.

a is the sampling interval at which the variation reaches the 
sill value, indicating the spatial correlation scale of the random 
variables; when h ≤ a , any two points have a correlation and 
the correlation decrease with the increase of h; when h > a, 
there is no correlation (Bi et al. 2006); C0 is the nugget value, 
indicating when h is very small, the change in values between 
two points reflect the possibility of the randomness within the 
regionalized variables Z(x); C1 is arch height, indicating the 
spatial heterogeneity caused by correlation factors (Li et al. 
2012); C0 + C1 is the sill value, indicating the intensity of vari-
ations of regionalized variables within the scope of this study 
is the largest variation of the observed indicators; the greater 
the value, the higher the degree of overall spatial heterogeneity 
(Hao 2005); C0/(C0 + C1) is the nugget coefficient, indicating 
the degree of spatial correlation of system variables. The nug-
get coefficient is the ratio of the nugget value to the sill value. 
If the ratio is less than 25%, the system has a strong spatial 
correlation, if between 25 and 75%, the system has moderate 
spatial correlation. If the ratio is more than 75%, the spatial 
correlation of the system is very weak (Yang et al. 2009). The 
size of the fractal dimension D represents the curvature of 
the semi-variogram curve, and the comparison between the 
D values of different variables can determine the degree of 
spatial heterogeneity (Wang et al. 2000).

For the regionalized variable fuel moisture content, the 
semivariogram γ(h) is not only related to the interval dis-
tance h, but also to the direction (Webster 1985). When a 
variogram is constructed in a particular direction, it is called 
an anisotropic variogram expressed as γ(h, θ), and γ(h) is 
called isotropic variogram (Li et al. 1998). The anisotropy 
ratio f K(h) describes the anisotropic structure of the mois-
ture content. If K(h) is equal to or close to 1, the spatial het-
erogeneity is isotropic, otherwise it is anisotropic (Li et al. 
1998).

The anisotropic equation is:

where γ(h, θ1) is the semi-variogram in θ1 direction; γ(h, θ2) 
is the semi-variogram in θ2 direction.

Error statistics of fuel moisture content data 
by different sampling methods

The moisture content measured by sampling is used for sim-
ulated sampling analysis. There are controlled, uncontrolled, 
and random sampling methods (Mao et al. 2012).

(3)K(h) =
�
(

h, �1
)

�
(

h, �2
)

In the simulated controlled sampling, the moisture con-
tent data was sampled at intervals of h = 1, 2, …, 4 m; sam-
pling intensity is the number of sampling points, indicated 
by m, m = 1, 2, …, 20, αh,m is the standard error when sam-
pling intensity is m and the sampling interval is h. The equa-
tion is:

where xi is the sample moisture content at i; x̄ is the average 
sample moisture content; n is the number of samples.

In the simulated uncontrolled sampling, the smaller the 
sampling interval, the more samples that can be taken. The 
moisture content error is calculated by the maximum value 
of the sampling intensity m; the maximum value of m is n/h. 
In the simulated random sampling, m samples are randomly 
taken from the moisture content data of each layer in each 
direction, m = 1, 2, …, 24, to calculate the average standard 
error.

Results and analysis

Statistical description of moisture content of fuel 
material

The average moisture content in each layer was: litter 
layer < semi-humus layer < humus layer, and the water 
content of the H litter layer was the lowest (11.3%). From 
the coefficient of variation, the variability of the mois-
ture content in the litter layer was highest in all directions 
(4.2–8.8%), in the semi-humus layer moderate in all direc-
tions (4.3–6.0%), and in humus layer lowest in all directions 
(3.3–4.6%) (Table 1).

Geostatistics spatial on heterogeneity of fuel moisture 
content

The three H layers and O litter layer are linear models; the V 
litter layer, V semi-humus layer and O humus layer are expo-
nential models; the O semi-humus layer is a Gauss model; 
and, the V humus layer is a spherical model. Figure 4 is 
a variation function model curve of the moisture content. 
According to the fitting model, the minimum coefficient of 
the V litter layer is 0.0350, the minimum coefficient of the 
H semi-humus layer is 0.0190, and the minimum coefficient 
of the O humus layer is 0.0520.

According to the parameters from the semivariogram fit-
ting model, the sill value of the litter layer in three directions 
from high to low is V (0.0155) > H (0.0120) > O (0.0067); 
the sill value of the semi-humus layer from high to low is O 
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(0.1592) > V (0.0736) > H (0.0497); and, the sill value of the 
humus layer from high to low is V (0.0753) > O (0.0532) > H 
(0.0276). The variation ranges of the V litter layer, V humus 
layer and O humus layer is from 3.5 to 5.5 m, indicating a 
spatial correlation of fuel moisture content at this distance 
(Table 2).

For the high or higher spatial correlations, there are O 
semi-humus layer, O litter layer and V three layers, and the 

lowest nugget coefficient is 0.0968. The fractal dimension 
of fuel moisture content in three directions is higher, rang-
ing from 1.8640 to 1.9930 and the highest fractal dimen-
sion is the V litter layer, which is 1.9930. The lowest fractal 
dimension is the O semi-humus layer, which is 1.8640. The 
difference of the fractal dimension of each moisture content 
is relatively small, but the degree of spatial heterogeneity 
caused by spatial correlation can still be seen.

Table 1   Dead fuel moisture content in a Larix gmelinii forest

Layer Direction Maximum (%) Minimum (%) Mean (%) Variance Standard 
deviation

Coefficient of 
variation (%)

Litter layer H 76.5 0.0 11.3 1.2 1.1 9.8
V 65.3 2.3 20.3 1.6 1.3 6.2
O 52.1 2.2 20.1 0.7 0.9 4.2

Semi-humus layer H 160.3 2.0 38.1 5.2 2.3 6.0
V 125.7 17.9 63.0 7.3 2.7 4.3
O 218.1 4.4 54.4 6.4 2.5 4.6

Humus layer H 124.4 14.8 38.4 3.1 1.8 4.6
V 138.2 23.4 69.1 7.2 2.7 3.9
O 130.5 32.1 67.9 4.9 2.2 3.3

Fig. 4   Semivariogram model curve of fuel moisture content
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Anisotropy of the fuel moisture content

Samples were taken in three directions and the data were 
subject to anisotropic analysis and compared. K(h) values 
deviated from 1 (Fig. 5). According to the anisotropy curve 
of litter layers, the variation of O was less than that of H 
and V. Comparing the variation of H and V anisotropy, 
the variation of H was greater than that of V in the range 
of 34–47 m, otherwise the variation of V was greater than 
that of H, indicating the complexity of variation of surface 
fuel moisture content in both directions. The anisotropy of 
the semi-humus layer is complex or there is no anisotropy; 
in comparing the variation of V and O, the anisotropy ratio 
ranged from 0.55 to 1.55, indicating a more changeable 
trend; the anisotropy curves of the humus layer showed 
strong spatial anisotropy, and the anisotropy comparison 
result was V > O > H. This shows that the anisotropy of 
the moisture content of the semi-humus layer in this Larix 
gmelinii forest was insignificant or changeable.

Error analysis of the estimation of the fuel moisture 
content

The analysis of simulated sampling data shows that the 
sampling error will increase with an increase of sampling 
interval in uncontrolled sampling (Fig.  6). Therefore, 
reducing the sampling interval and increasing sampling 

Table 2   Semivariogram model and related parameters of fuel moisture content in a Larix gmelinii forest

Layer Direction Model Nugget
C0

Sill
C0 + C1

Range a Nugget coefficient
C0/(C0 + C1)

Determina-
tion coef-
ficient
R2

Residual SS Fractal dimension

Litter layer H Linear 0.0120 0.0120 64.9618 1.0000 0.1590 6.490E‒05 1.9450
V Exponential 0.0015 0.0155 3.9000 0.0968 0.0350 1.005E‒04 1.9930
O Linear 0.0067 0.0067 64.9618 1.0000 0.5630 1.019E‒05 1.9550

Semi-humus layer H Linear 0.0497 0.0497 64.9618 1.0000 0.0190 1.261E‒03 1.9690
V Exponential 0.0093 0.0736 10.5000 0.1264 0.1200 3.552E‒03 1.9700
O Gaussian 0.0531 0.1592 111.3709 0.3335 0.4010 0.0118 1.8640

Humus layer H Linear 0.0276 0.0276 64.9618 1.0000 0.1820 2.445E‒04 1.9530
V Spherical 0.0073 0.0753 4.0000 0.0969 0.0980 1.070E‒03 1.9740
O Exponential 0.0098 0.0532 5.1000 0.1842 0.0520 1.105E‒03 1.9750

Fig. 5   Anisotropy ratio curve of dead fuel moisture content in three transects

Fig. 6   Simulated uncontrolled sampling error analysis
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intensity as much as possible can reduce the error but it 
has little practical significance.

The results of simulated controlled sampling (Fig. 7) 
can be observed from the error analysis in H, V, O direc-
tions: when the sampling interval is 1‒4  m, the error 
decreases but not obviously with an increase of sampling 
interval; when the sampling intensity in three directions 
increases, the standard error decreases finally to 0.1. In 
the H direction, when the sampling interval is 3-m and 
the sampling intensity 16, the standard error is reduced 
to 14.1%; in the V direction, when the interval is 4-m and 
sampling intensity 20, the standard error is 13.9%; in the 
O direction, when the interval is 2-m and the intensity 19, 
the standard error is 14.6%.

Error analysis of simulated random sampling shows that 
the standard error decreases with the increase of sampling 
intensity (Fig. 8). Within the sampling intensity, m = 1, 2, 
3, …, 24, more than eight samples are required to keep the 
standard error below 15%. Due to the randomness of the 
sampling interval and the large range of error variation 
during random sampling, the results are not representative.

Discussion

Effects of general statistics and geostatistics on spatial 
heterogeneity of fuel moisture content

Different statistical methods were used to study spatial 
heterogeneity of the dead fuel moisture content. The aver-
age water content in the litter layer, semi-humus layer and 
humus layer was 17.2%, 51.8%, and 58.4%, respectively. 
The closer to the surface, the lower the water content of 
the fuel. This is consistent with Man et al. (2019) on the 
dynamic moisture content changes of three layers surface 
fuel. The moisture content of the surface fuel is most 
related to climatic factors of the day or the previous day. 
These have a significant impact on the moisture content of 
the litter layer, then on the semi-humus. The surface litter 

layer has the lowest water content, possibly because the lit-
ter layer fuel has more and larger pores and water perme-
ability is strong, promoting downward infiltration. In field 
sampling, as sampling depth and fuel moisture content 
increase, the coefficient of variation decreases, which is 
similar for soil moisture in the Taiyueshan small watershed 
in Shanxi (Wang et al. 2017) and for soil water content 
(Owe et al. 1982). This indicates that moisture content 
in the litter layer is more affected by external conditions 
than lower layers (Yin et al. 2013), and that the spatial 
distribution of the fuel moisture content in the lower lay-
ers is relatively homogeneous and stable, while the spatial 
variation of the moisture content in the litter layer is more 
active (Qiu et al. 2016). In terms of directional variation, 
the coefficient of variation of H and V moisture content is 
largest in the litter layer, indicating that the variation of 
fuel moisture content in litter layer is the largest in these 
two directions, while in the O direction, the coefficient 
of variation was largest in the semi-humus layer is the 
largest, which indicates that the variation of fuel moisture 
content in semi-humus layer is the largest in this direction. 
The standard deviation of fuel moisture content of three 
layers in three directions is the largest in the V direction, 
indicating that the data are more discrete and that there are 
significant differences among different sampling points. 
These statistical results may be related to soil structure, 
vegetation status, sampling method, and climate factors.

This study used the principles and methods of geo-
statistics, combined with ground survey data, to visually 
describe the spatial distribution of dead fuel moisture con-
tent (Liu et al. 2008). Mao et al. (2012) investigated the 
spatial heterogeneity of surface fuel moisture content in a 
Larix gmelinii forest and reported that the maximum sill 
value of the litter layer in the O direction was the highest 
(0.1632), followed by the value in the V direction, and the 
value in the H direction was the smallest. The humus layer 
of the H direction was the largest (0.1276). Generally, the 
spatial heterogeneity of the litter layer is higher than that 
of the humus layer (Mao et al. 2012). In this study, the 

Fig. 7   Simulated controlled sampling of error analysis in a H direction, b V direction, and c O direction
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order of sill value of the litter layer was V > H > O, the 
semi-humus layer O > V > H, and the humus V > O > H. 
Overall, the spatial heterogeneity of the moisture content 
of the semi-humus layer was the highest, that of the humus 
layer moderate, and lowest in the litter layer. It can be seen 
that the total spatial heterogeneity of fuel moisture content 
at different depths was different.

Effects of sampling methods on fuel moisture content

The spatial heterogeneity of fuel moisture content is closely 
related to factors of sampling methods and to natural pro-
cesses. In estimating the total moisture content of the sam-
pling area by stimulated sampling reasonable control of the 
sampling interval, and increasing sampling intensity can 
reduce error. When the sampling intensity is increased to 
more than 16 times and the sampling interval is 3 m, the 
standard error is < 15%. At the same sampling interval, 
with an increase in the number of sampling points, the rate 
of error reduction is increased (Yan et al. 2019). Zhang 
et al. (2017) studied the spatial heterogeneity of soil mois-
ture in the slope land reconstruction and natural grassland 
reconstruction in degraded red soil area and concluded that 
increasing sampling density and scale could better reveal the 
spatial heterogeneity of soil moisture. Xing et al. (2015) con-
sidered that increasing the sampling points could improve 
the accuracy of soil moisture monitoring. These are consist-
ent with the results of this study.

Compared with Mao et al. (2012) on the spatial hetero-
geneity of fuel moisture content, the results in this study 
may better reflect the spatial heterogeneity of fuel moisture 
content. This may be because the selected samples were 
taken in three layers and the sampling intensity was greater, 
the results were more representative. The optimal sampling 
intensity depends on sampling interval, the degree of vari-
ation and the variation rate of the indicators (Conen et al. 
2005). By controlling the sampling interval, sampling inten-
sity can be appropriately reduced within a certain interval 

Fig. 8   Random sampling simulation error analysis

limit, thereby obtaining a more accurate estimate of fuel 
moisture content.

Conclusion

The spatial heterogeneity of the dead fuel moisture content 
in the litter, semi-humus and humus layers in three direc-
tions, vertical, horizontal and slant in a Larix gmelinii forest 
was analyzed using geostatistics. The spatial heterogene-
ity of fuel moisture content was highest in the semi-humus 
layer. This has practical bearing for a statistical study of dead 
fuel moisture content and lays the basis for the prediction 
of the spread rate of a surface fire to underground fire when 
forest fires occur. In addition, it has a role in predicting the 
fire risk level and the forest burned area to provide a basis 
for the development of firefighting plans.

In this study, only the dead fuel in a sample area in a 
L. gmelinii forest was selected and only during the autumn 
fire prevention period, and the selected plot was on a sunny 
slope. Therefore, in future research, it will be necessary to 
establish multiple experimental plots in different fire sea-
sons and on different slope directions and positions. This 
will improve the accuracy of moisture content measurement, 
reduce experimental errors, increase the accuracy of fire risk 
prediction and provide a theoretical basis for effective pre-
vention and control of forest fires.

Acknowledgements  Data measurement and analysis were provided 
by the Saihanwula Forestry Ecosystem Positioning Research Station 
in Inner Mongolia.

References

Bi HX, Li XY, Liu X, Li J, Guo MX (2006) Spatial heterogeneity of 
soil moisture using geological statistics method in the loess region 
of west Shanxi Province. J Beijing Forest Univ 28(5):59–66 (in 
Chinese)

Conen F, Zerva A, Arrouays D, Jolivet C, Jarvis PG, Grace J, Mencuc-
cini M (2005) The carbon balance of forest soils: detectability of 
changes in soil carbon stocks in temperate and boreal forests. SEB 
Exp Biol Ser 2005:235–249

Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 
17(4):177–183

Fu TG, Chen HS, Zhang W, Gao P, Wang KL (2014) Spatial variability 
of soil moisture content and its influencing factors in small Karst 
catchment during dry period, China. Trans Chin Soc Agric Eng 
30(14):124–131 (in Chinese)

Han YZ, Wang ZQ (2002) Spatial heterogeneity and forest regenera-
tion. Chin J Appl Ecol 5:615–619 (in Chinese)

Hao JX (2005) The study on spatial heterogeneity of soil water and 
salinity in oasis and transition between oasis and desert of 
Zhangye City. Doctoral dissertation. Northwest Normal Univer-
sity (in Chinese)

Hernandez-Stefanoni JL, Ponce-Hernandez R (2006) Mapping 
the spatial variability of plant diversity in a tropical forest: 



577Spatial heterogeneity of dead fuel moisture content in a Larix gmelinii forest in Inner Mongolia…

1 3

comparison of spatial interpolation methods. Environ Monit 
Assess 117(1–3):307–334

Ivanov VY, Fatichi S, Jenerette GD, Espeleta JF, Troch PA, Huxman 
TE (2010) Hysteresis of soil moisture spatial heterogeneity and 
the “homogenizing” effect of vegetation. Water Resour Res. 
https://​doi.​org/​10.​1029/​2009W​R0086​11

Jing S, Tian J, Wang JY, Wang QF, Yang GD, Guo DL, Yu GR (2016) 
Small-scale spatial heterogeneity of soil organic matter fractions 
within an original broad-leaved Korean pine forest in Changbai 
Mountain. Acta Ecol Sin 36(20):6445–6456 (in Chinese)

Li HB, Wang ZQ, Wang QC (1998) Theory and methodology of spa-
tial heterogeneity quantification. Chin J Appl Ecol 6:93–99 (in 
Chinese)

Li M, Duan WB, Chen LX, Wei L, Feng J, Wang SQ (2012) Geostatis-
tical analysis on spatiotemporal distribution pattern of soil water 
content of forest gap in Pinus koraiensis dominated broadleaved 
mixed forest. Acta Ecol Sin 32(5):1396–1402 (in Chinese)

Li YD, Cui X, Wen P, Yan JX (2015) Research progress on water con-
tent of forest fuel. For Fire Prevent 4:39–41 (in Chinese)

Liu L (2013) Patial variability of soil organic carbon and nutrients in 
typical forestlands in low mountain area of Changbai Mountain. 
Beijing Forestry University, Beijing (in Chinese)

Liu BX, Shao MA (2012) Soil water content heterogeneity at small-
scale on degraded grasslands on Loess Plateau. Sci Soil Water 
Conserv 10(4):60–65 (in Chinese)

Liu ZH, Chang Y, Chen HW, Zhou R, Jing GZ, Zhang HX, Zhang CM 
(2008) Spatial pattern of land surface dead combustible fuel load 
in Huzhong forest area in Great Xing’an Mountains. Chin J Appl 
Ecol 19(3):487–493 (in Chinese)

Man ZY, Hu HQ, Zhang YL, Liu FC, Li Y (2019) Dynamic change 
and prediction model of moisture content of surface fuel in Maoer 
Mountain of northeastern. J Beijing For Univ 41(3):49–57 (in 
Chinese)

Mao WX, Tong DH, Zhang C, Zhao DD, Ding YY, Jin S (2012) Spatial 
heterogeneity of moisture content of land surface dead fuel in 
larch stand and effects of sampling methods on moisture estima-
tion. J Northeast For Univ 40(5):29–33 (in Chinese)

Matheron G (1963) Principles of geostatistics. Econ Geol 
58(8):1246–1266

Owe M, Jones EB, Schmugge TJ (1982) Soil moisture variation pat-
terns observed in Hand County, South Dakota. J Am Water Resour 
Assoc 18(6):949–954

Qiu BG, Li YX, Yang XL, Ma HP (2016) Distribution pattern of soil 
moisture spacetime of forestland in semi-arid valley of Lhasa, 
southwestern. J Beijing For Univ 38(11):9–15 (in Chinese)

Shi LL (2012) Study on the spatial heterogeneity of soil physical and 
chemical properties of primary tropical montane rainforest in 
Jianfengling. Chinese Academy of Forestry, Hainan Island (in 
Chinese)

Song D, Li H, Liu SJ, Zou GY, Liu DS (2019) A geostatistic inves-
tigation of the comprehensive evaluation of fertility and spatial 
heterogeneity of forest soil nutrients in hilly and mountainous 
regions of southern China. Arab J Geosci 12(9):292

Wang J, Fu BJ, Qiu Y, Chen LD (2000) Spatiotemporal variability of 
soil moisture in small catchment on Loess Plateau—semivari-
ograms. Acta Geogr Sin 4:428–438 (in Chinese)

Wang J, Fu BJ, Qiu Y, Chen LD, Wang Z (2001) Geostatistical analysis 
of soil moisture variability on Da Nangou catchment of the loess 
plateau. China Environ Geol 41(1–2):113–120

Wang QH, Yu XS, Li SY, Tong YM, Liu B, Ruan DZ (2012) Study on 
dynamic characteristics of forest fuel. For Invent Plan 37(5):40–43 
(in Chinese)

Wang T, Kang FF, Han HR, Cheng XQ, Bai YC, Ma JY, Guo ZH 
(2017) Factors influencing spatial heterogeneity of soil moisture 
content in a small catchment of Mount Taiyue, Shanxi Province. 
Acta Ecol Sin 37(11):3902–3911 (in Chinese)

Webster R (1985) Quantitative spatial analysis of soil in the field. Adv 
Soil Sci 3:61–70

Xing XG, Zhao WG, Liu Y, Ma XY (2015) Spatial variability of soil 
moisture in kiwi field under different sampling density conditions. 
Trans Chin Soc Agric Mach 46(8):138–145 (in Chinese)

Yan BL, Zhao QG, Zhang B, Li YL, Zhao PW, Zhang H (2017) Effects 
of different vegetation types on soil physicochemical properties 
and soil respiration. Ecol Environ Sci 26(2):189–195 (in Chinese)

Yan JX, Sun Q, Li JJ, Li HJ (2019) Effect of the sampling scale and 
number on the heterogeneity of soil respiration in a mixed broad-
leaf-conifer forest. Environ Sci 40(1):383–391 (in Chinese)

Yang YJ, Zhu JH, Liu SH, Tang Y, Liu YZ, Feng WJ (2009) Spa-
tial statistic properties of agronomic parameters and soil mois-
ture content in wheat jointing stage. Trans Chin Soc Agric Mach 
40(S1):159–164 (in Chinese)

Yin H, Li H, Jiang ZC, Yang QY, Wang Y (2013) Spatial heteroge-
neity of soil moisture in typical karst areas. Jiangsu Agric Sci 
41(7):332–336 (in Chinese)

Zhang XG (2016) Spatial distribution of soil moisture in southern 
slope of Qilian Mountains. Qinghai Normal University, Xining 
(in Chinese)

Zhang SL, Yong WY, Yang YX, Lu ZX, Zhang F, Li GL (2008) Study 
on the vegetation classification in Saihanwula mature reserve. J 
Inner Mongolia Univ 01:74–79 (in Chinese)

Zhang HW, Ma JY, Zhang ZW, Sun T, Lv GH (2009) Utilization of 
and research on geostatistics in soil science. J Lanzhou Univ (Nat 
Sci) 45(6):14–20 (in Chinese)

Zhang ZJ, Liu LY, Liu YQ, Wu CS, Qiu MY, Guo JR, Deng WP (2017) 
Spatiotemporal variation of soil moisture in summer season dur-
ing process of vegetation restoration in degraded red soil region. 
J Southwest For Univ 37(3):88–94 (in Chinese)

Zhang H, Dong CC, Niu S, Zhang YL, Jin S, Wang YX (2018) Effects 
of different sampling methods on forecast model accuracy of pre-
dicting fuels in forests in Pangu forest farm, China. J Cent South 
Univ For Technol 38(5):33–39 (in Chinese)

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1029/2009WR008611

	Spatial heterogeneity of dead fuel moisture content in a Larix gmelinii forest in Inner Mongolia using geostatistics
	Abstract 
	Introduction
	Materials and methods
	Study area
	Field sampling
	Calculation of fuel moisture content
	Calculation of spatial heterogeneity of fuel moisture content
	Error statistics of fuel moisture content data by different sampling methods

	Results and analysis
	Statistical description of moisture content of fuel material
	Geostatistics spatial on heterogeneity of fuel moisture content
	Anisotropy of the fuel moisture content
	Error analysis of the estimation of the fuel moisture content

	Discussion
	Effects of general statistics and geostatistics on spatial heterogeneity of fuel moisture content
	Effects of sampling methods on fuel moisture content

	Conclusion
	Acknowledgements 
	References




